安全性对于 MCP 实施至关重要,尤其是在企业环境中。务必确保工具和数据免受未经授权的访问、数据泄露和其他安全威胁。
在本课中,我们将探讨 MCP 实施的安全最佳实践。我们将涵盖身份验证和授权、数据保护、安全工具执行以及数据隐私法规合规性。
学完本课后,您将能够:
身份验证和授权对于确保 MCP 服务器的安全至关重要。身份验证回答的是“您是谁?”,而授权回答的是“您能做什么?”。
让我们看一下如何使用 .NET 和 Java 在 MCP 服务器中实现安全身份验证和授权的示例。
ASP .NET Core Identity 提供了一个强大的框架来管理用户身份验证和授权。我们可以将其与 MCP 服务器集成,以保护对工具和资源的访问。
在将 ASP.NET Core Identity 与 MCP 服务器集成时,我们需要了解一些核心概念:
public class SecureMcpStartup
{
public void ConfigureServices(IServiceCollection services)
{
// Add ASP.NET Core Identity
services.AddIdentity()
.AddEntityFrameworkStores()
.AddDefaultTokenProviders();
// Configure JWT authentication
services.AddAuthentication(options =>
{
options.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;
options.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;
})
.AddJwtBearer(options =>
{
options.TokenValidationParameters = new TokenValidationParameters
{
ValidateIssuer = true,
ValidateAudience = true,
ValidateLifetime = true,
ValidateIssuerSigningKey = true,
ValidIssuer = Configuration["Jwt:Issuer"],
ValidAudience = Configuration["Jwt:Audience"],
IssuerSigningKey = new SymmetricSecurityKey(
Encoding.UTF8.GetBytes(Configuration["Jwt:Key"]))
};
});
// Add authorization policies
services.AddAuthorization(options =>
{
options.AddPolicy("CanUseAdminTools", policy =>
policy.RequireRole("Admin"));
options.AddPolicy("CanUseBasicTools", policy =>
policy.RequireAuthenticatedUser());
});
// Configure MCP server with security
services.AddMcpServer(options =>
{
options.ServerName = "Secure MCP Server";
options.ServerVersion = "1.0.0";
options.RequireAuthentication = true;
});
// Register tools with authorization requirements
services.AddMcpTool(options =>
options.RequirePolicy("CanUseBasicTools"));
services.AddMcpTool(options =>
options.RequirePolicy("CanUseAdminTools"));
}
public void Configure(IApplicationBuilder app)
{
// Use authentication and authorization
app.UseAuthentication();
app.UseAuthorization();
// Use MCP server middleware
app.UseMcpServer();
}
}
在上面的代码中,我们有:
对于 Java,我们将使用 Spring Security 实现 MCP 服务器的安全身份验证和授权。Spring Security 提供了一个全面的安全框架,可与 Spring 应用程序无缝集成。
这里的核心概念是:
@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {
@Override
protected void configure(HttpSecurity http) throws Exception {
http
.csrf().disable()
.authorizeRequests()
.antMatchers("/mcp/discovery").permitAll() // Allow tool discovery
.antMatchers("/mcp/tools/**").hasAnyRole("USER", "ADMIN") // Require authentication for tools
.antMatchers("/mcp/admin/**").hasRole("ADMIN") // Admin-only endpoints
.anyRequest().authenticated()
.and()
.oauth2ResourceServer().jwt();
}
@Bean
public McpSecurityInterceptor mcpSecurityInterceptor() {
return new McpSecurityInterceptor();
}
}
// MCP Security Interceptor for tool authorization
public class McpSecurityInterceptor implements ToolExecutionInterceptor {
@Autowired
private JwtDecoder jwtDecoder;
@Override
public void beforeToolExecution(ToolRequest request, Authentication authentication) {
String toolName = request.getToolName();
// Check if user has permissions for this tool
if (toolName.startsWith("admin") && !authentication.getAuthorities().contains("ROLE_ADMIN")) {
throw new AccessDeniedException("You don't have permission to use this tool");
}
// Additional security checks based on tool or parameters
if ("sensitiveDataAccess".equals(toolName)) {
validateDataAccessPermissions(request, authentication);
}
}
private void validateDataAccessPermissions(ToolRequest request, Authentication auth) {
// Implementation to check fine-grained data access permissions
}
}
在上面的代码中,我们有:
数据保护对于确保敏感信息的安全处理至关重要。这包括保护个人身份信息 (PII)、财务数据和其他敏感信息免遭未经授权的访问和泄露。
让我们看一个示例,了解如何使用加密和 PII 检测在 Python 中实现数据保护。
from mcp_server import McpServer
from mcp_tools import Tool, ToolRequest, ToolResponse
from cryptography.fernet import Fernet
import os
import json
from functools import wraps
# PII Detector - identifies and protects sensitive information
class PiiDetector:
def __init__(self):
# Load patterns for different types of PII
with open("pii_patterns.json", "r") as f:
self.patterns = json.load(f)
def scan_text(self, text):
"""Scans text for PII and returns detected PII types"""
detected_pii = []
# Implementation to detect PII using regex or ML models
return detected_pii
def scan_parameters(self, parameters):
"""Scans request parameters for PII"""
detected_pii = []
for key, value in parameters.items():
if isinstance(value, str):
pii_in_value = self.scan_text(value)
if pii_in_value:
detected_pii.append((key, pii_in_value))
return detected_pii
# Encryption Service for protecting sensitive data
class EncryptionService:
def __init__(self, key_path=None):
if key_path and os.path.exists(key_path):
with open(key_path, "rb") as key_file:
self.key = key_file.read()
else:
self.key = Fernet.generate_key()
if key_path:
with open(key_path, "wb") as key_file:
key_file.write(self.key)
self.cipher = Fernet(self.key)
def encrypt(self, data):
"""Encrypt data"""
if isinstance(data, str):
return self.cipher.encrypt(data.encode()).decode()
else:
return self.cipher.encrypt(json.dumps(data).encode()).decode()
def decrypt(self, encrypted_data):
"""Decrypt data"""
if encrypted_data is None:
return None
decrypted = self.cipher.decrypt(encrypted_data.encode())
try:
return json.loads(decrypted)
except:
return decrypted.decode()
# Security decorator for tools
def secure_tool(requires_encryption=False, log_access=True):
def decorator(cls):
original_execute = cls.execute_async if hasattr(cls, 'execute_async') else cls.execute
@wraps(original_execute)
async def secure_execute(self, request):
# Check for PII in request
pii_detector = PiiDetector()
pii_found = pii_detector.scan_parameters(request.parameters)
# Log access if required
if log_access:
tool_name = self.get_name()
user_id = request.context.get("user_id", "anonymous")
log_entry = {
"timestamp": datetime.now().isoformat(),
"tool": tool_name,
"user": user_id,
"contains_pii": bool(pii_found),
"parameters": {k: "***" for k in request.parameters.keys()} # Don't log actual values
}
logging.info(f"Tool access: {json.dumps(log_entry)}")
# Handle detected PII
if pii_found:
# Either encrypt sensitive data or reject the request
if requires_encryption:
encryption_service = EncryptionService("keys/tool_key.key")
for param_name, pii_types in pii_found:
# Encrypt the sensitive parameter
request.parameters[param_name] = encryption_service.encrypt(
request.parameters[param_name]
)
else:
# If encryption not available but PII found, you might reject the request
raise ToolExecutionException(
"Request contains sensitive data that cannot be processed securely"
)
# Execute the original method
return await original_execute(self, request)
# Replace the execute method
if hasattr(cls, 'execute_async'):
cls.execute_async = secure_execute
else:
cls.execute = secure_execute
return cls
return decorator
# Example of a secure tool with the decorator
@secure_tool(requires_encryption=True, log_access=True)
class SecureCustomerDataTool(Tool):
def get_name(self):
return "customerData"
def get_description(self):
return "Accesses customer data securely"
def get_schema(self):
# Schema definition
return {}
async def execute_async(self, request):
# Implementation would access customer data securely
# Since we used the decorator, PII is already detected and encrypted
return ToolResponse(result={"status": "success"})
在上面的代码中,我们有:
PiiDetector
类来扫描文本和参数以获取个人身份信息(PII)。EncryptionService
类来使用该库处理敏感数据的加密和解密cryptography
。secure_tool
装饰器,包装工具执行以检查 PII、记录访问并在需要时加密敏感数据。secure_tool
装饰器应用于示例工具(SecureCustomerDataTool
),以确保它安全地处理敏感数据。