GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!

GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!

目录

    • GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!_第1张图片

GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!_第2张图片
GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!_第3张图片

基本介绍

GRU回归+SHAP分析+PDP部分依赖图!门控循环单元结合SHAP可解释分析,Matlab代码实现,敏感性分析方法。

详细介绍

  1. 引言
    在正向渗透(Forward Osmosis, FO)过程中,水通量的精准预测对于优化膜分离工艺和提升系统效率具有重要工程意义。然而,传统机理模型常受限于复杂的传质动力学方程,难以兼顾预测精度与可解释性。本研究提出一种融合GRU门控循环单元与SHapley加性解释(SHAP)的混合建模框架,旨在构建高精度且可解释的回归模型,以解析操作参数对水通量的非线性影响机制。该模型以膜面积、进料/汲取液流速及浓度等关键操作参数为输入特征,通过SHAP方法量化特征贡献,为工艺优化提供透明化决策支持。
  2. 方法论
    2.1 数据准备与预处理
    实验数据采集自FO工艺数据库,包含六维参数(5输入特征,1输出目标)。输入特征涵盖膜面积、进料流速、汲取液流速、进料浓度及汲取液浓度。数据经归一化处理,以消除量纲差异。

2.2 GRU门控循环单元
模型构建与训练
采用MATLAB R2020b实现GRU门控循环单元。
2.3 SHAP可解释性分析
SHAP值基于合作博弈论中的Shapley值理论,量化特征对模型预测的边际贡献。通过Shapley值量化每个特征对预测结果的贡献,提供模型可解释性。

图片

  1. 结论
    本研究成功构建了基于GRU门控循环单元与SHAP的可解释回归模型,实现了FO水通量的高精度预测与特征贡献解析。方法学创新体现于:引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角。

代码主要功能
该MATLAB代码实现了一个基于GRU门控循环单元的回归预测模型,核心功能包括:

数据预处理:导入数据、随机打乱、划分训练集/测试集、归一化处理

GRU门控循环单元模型构建:使用GRU建立回归模型

模型预测与评估:计算RMSE、R²、MAE、MAPE等多种评价指标

结果可视化:预测值对比图、误差分析图、拟合效果图

模型可解释性分析:SHAP值计算与特征重要性可视化

应用场景
回归预测问题:

房价预测、销售量预测、能源负荷预测

工业参数预估(温度、压力、产量等)

模型可解释性要求高的场景:

金融风控(特征贡献度分析)

医疗诊断(关键因素识别)

科研领域(变量影响机制研究)

创新点
多维度评估:同时计算多种回归评价指标

模型可解释性:集成SHAP分析

友好设计:包含数据反归一化、误差条形图等

数据集
GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!_第4张图片

程序设计

  • 完整程序和数据下载私信博主回复GRU门控循环单元回归+SHAP分析,Matlab代码实现,通过SHAP方法量化特征贡献,构建可解释的回归模型,引入SHAP方法打破黑箱限制,提供全局及局部双重解释视角,作者:机器学习之心!

.rtcContent { padding: 30px; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
rng('default');
%% 导入数据
res = xlsread('data.xlsx'); 
%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
% ------------------ SHAP值计算 ------------------
x_norm_shap = mapminmax('apply', data_shap', x_settings)'; % 直接应用已有归一化参数
% 初始化SHAP值矩阵
shapValues = zeros(size(x_norm_shap));
refValue = mean(x_norm_shap, 1); % 参考值为特征均值
% 计算每个样本的SHAP值
rtcContent { padding: 30px; } .lineNode {font-size: 10pt; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-style: normal; font-weight: normal; }
for i = 1:numSamples
    x = shap_x_norm(i, :);  % 当前样本(归一化后的值)
    shapValues(i, :) = shapley_(net, x, refValue_norm); % 调用SHAP函数
end



参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

你可能感兴趣的:(可解释机器学习,GRU门控循环单元回归,SHAP分析)