深度学习Day-38:Pytorch文本分类入门

   本文为:[365天深度学习训练营] 中的学习记录博客
  原作者:[K同学啊 | 接辅导、项目定制]

任务:

  •  了解文本分类的基本流程
  •  学习常用数据清洗方法
  •  学习如何使用jieba实现英文分词
  •  学习如何构建文本向量

1.前期准备

1.1 环境安装

pip install torchvision==0.15.0
pip install torchaudio==2.0.1
pip install torch==2.0.0

1.2 加载数据

import torchvision
from torchvision import transforms, datasets

import torch
import torch.nn as nn

import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

# win10系统,调用GPU运行
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

代码输出为:

device(type='cpu')

1.3 构建词典 

from torchtext.datasets import AG_NEWS

train_iter = AG_NEWS(split='train')      # 加载 AG News 数据集

from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator

tokenizer  = get_tokenizer('basic_english') # 返回分词器函数,训练营内“get_tokenizer函数详解”一文

def yield_tokens(data_iter):
    for _, text in data_iter:
        yield tokenizer(text)

vocab = build_vocab_from_iterator(yield_tokens(train_iter), 
                                  specials=[""])
vocab.set_default_index(vocab[""]) # 设置默认索引,如果找不到单词,则会选择默认索引

        torchtext.datasets.AG_NEWS()是一个用于加载 AG News 数据集的 TorchText 数据集类。AG News 数据集是一个用于文本分类任务的常见数据集,其中包含四个类别的新闻文章:世界、科技、体育和商业。torchtext.datasets.AG_NEWS() 类加载的数据集是一个列表,其中每个条目都是一个元组,包含以下两个元素:

  • 一条新闻文章的文本内容
  • 新闻文章所属的类别(一个整数,从1到4,分别对应世界、科技、体育和商业)

抽查索引:

text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: int(x) - 1
text_pipeline('here is the an example')

 代码输出为:

 [475, 21, 2, 30, 5297]

        .data.utils.get_tokenizer() 是一个用于将文本数据分词的函数。它返回一个分词器(tokenizer)函数,可以将一个字符串转换成一个单词的列表。这个函数可以接受两个参数:tokenizer 和 language,tokenizer参数指定要使用的分词器的名称。

1.4 生成数据批次和迭代器

from torch.utils.data import DataLoader

def collate_batch(batch):
    label_list, text_list, offsets = [], [], [0]
    
    for (_label, _text) in batch:
        # 标签列表
        label_list.append(label_pipeline(_label))
        
        # 文本列表
        processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)
        text_list.append(processed_text)
        
        # 偏移量,即语句的总词汇量
        offsets.append(processed_text.size(0))
        
    label_list = torch.tensor(label_list, dtype=torch.int64)
    text_list  = torch.cat(text_list)
    offsets    = torch.tensor(offsets[:-1]).cumsum(dim=0) #返回维度dim中输入元素的累计和
    
    return label_list.to(device), text_list.to(device), offsets.to(device)

# 数据加载器
dataloader = DataLoader(train_iter,
                        batch_size=8,
                        shuffle   =False,
                        collate_fn=collate_batch)

2.准备模型

2.1 定义模型

from torch import nn

class TextClassificationModel(nn.Module):

    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        
        self.embedding = nn.EmbeddingBag(vocab_size,   # 词典大小
                                         embed_dim,    # 嵌入的维度
                                         sparse=False) # 
        
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()

    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()

    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)

        这里定义TextClassificationModel模型,首先对文本进行嵌入,然后对句子嵌入之后的结果进行均值聚合。 

 深度学习Day-38:Pytorch文本分类入门_第1张图片

        self.embedding.weight.data.uniform_(-initrange, initrange)这段代码是在 PyTorch 框架下用于初始化神经网络的词嵌入层(embedding layer)权重的一种方法。这里使用了均匀分布的随机值来初始化权重,具体来说,其作用如下:

  1. self.embedding: 这是神经网络中的词嵌入层(embedding layer)。词嵌入层的作用是将离散的单词表示(通常为整数索引)映射为固定大小的连续向量。这些向量捕捉了单词之间的语义关系,并作为网络的输入。
  2. self.embedding.weight: 这是词嵌入层的权重矩阵,它的形状为 (vocab_size, embedding_dim),其中 vocab_size 是词汇表的大小,embedding_dim 是嵌入向量的维度。
  3. self.embedding.weight.data: 这是权重矩阵的数据部分,我们可以在这里直接操作其底层的张量。
  4. uniform_(-initrange, initrange): 这是一个原地操作(in-place operation),用于将权重矩阵的值用一个均匀分布进行初始化。均匀分布的范围为 [-initrange, initrange],其中initrange 是一个正数。

        通过这种方式初始化词嵌入层的权重,可以使得模型在训练开始时具有一定的随机性,有助于避免梯度消失或梯度爆炸等问题。在训练过程中,这些权重将通过优化算法不断更新,以捕捉到更好的单词表示。

2.2 定义实例

num_class  = len(set([label for (label, text) in train_iter]))
vocab_size = len(vocab)
em_size     = 64
model      = TextClassificationModel(vocab_size, em_size, num_class).to(device)

2.3 定义训练函数与评估函数

import time

def train(dataloader):
    model.train()  # 切换为训练模式
    total_acc, train_loss, total_count = 0, 0, 0
    log_interval = 500
    start_time   = time.time()

    for idx, (label, text, offsets) in enumerate(dataloader):
        
        predicted_label = model(text, offsets)
        
        optimizer.zero_grad()                    # grad属性归零
        loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值
        loss.backward()                          # 反向传播
        optimizer.step()  # 每一步自动更新
        
        # 记录acc与loss
        total_acc   += (predicted_label.argmax(1) == label).sum().item()
        train_loss  += loss.item()
        total_count += label.size(0)
        
        if idx % log_interval == 0 and idx > 0:
            elapsed = time.time() - start_time
            print('| epoch {:1d} | {:4d}/{:4d} batches '
                  '| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch, idx, len(dataloader),
                                              total_acc/total_count, train_loss/total_count))
            total_acc, train_loss, total_count = 0, 0, 0
            start_time = time.time()

def evaluate(dataloader):
    model.eval()  # 切换为测试模式
    total_acc, train_loss, total_count = 0, 0, 0

    with torch.no_grad():
        for idx, (label, text, offsets) in enumerate(dataloader):
            predicted_label = model(text, offsets)
            
            loss = criterion(predicted_label, label)  # 计算loss值
            # 记录测试数据
            total_acc   += (predicted_label.argmax(1) == label).sum().item()
            train_loss  += loss.item()
            total_count += label.size(0)
            
    return total_acc/total_count, train_loss/total_count

3.训练模型

3.1 拆分数据集并运行模型

from torch.utils.data.dataset import random_split
from torchtext.data.functional import to_map_style_dataset
# 超参数
EPOCHS     = 10 # epoch
LR         = 5  # 学习率
BATCH_SIZE = 64 # batch size for training

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)
total_accu = None

train_iter, test_iter = AG_NEWS() # 加载数据
train_dataset = to_map_style_dataset(train_iter)
test_dataset  = to_map_style_dataset(test_iter)
num_train     = int(len(train_dataset) * 0.95)

split_train_, split_valid_ = random_split(train_dataset,
                                          [num_train, len(train_dataset)-num_train])

train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)
test_dataloader  = DataLoader(test_dataset, batch_size=BATCH_SIZE,
                              shuffle=True, collate_fn=collate_batch)

for epoch in range(1, EPOCHS + 1):
    epoch_start_time = time.time()
    train(train_dataloader)
    val_acc, val_loss = evaluate(valid_dataloader)
    
    if total_accu is not None and total_accu > val_acc:
        scheduler.step()
    else:
        total_accu = val_acc
    print('-' * 69)
    print('| epoch {:1d} | time: {:4.2f}s | '
          'valid_acc {:4.3f} valid_loss {:4.3f}'.format(epoch,
                                           time.time() - epoch_start_time,
                                           val_acc,val_loss))

    print('-' * 69)

代码输出为:

| epoch 1 |  500/1782 batches | train_acc 0.711 train_loss 0.01138
| epoch 1 | 1000/1782 batches | train_acc 0.863 train_loss 0.00631
| epoch 1 | 1500/1782 batches | train_acc 0.881 train_loss 0.00551
---------------------------------------------------------------------
| epoch 1 | time: 15.64s | valid_acc 0.841 valid_loss 0.007
---------------------------------------------------------------------
| epoch 2 |  500/1782 batches | train_acc 0.902 train_loss 0.00457
| epoch 2 | 1000/1782 batches | train_acc 0.903 train_loss 0.00451
| epoch 2 | 1500/1782 batches | train_acc 0.905 train_loss 0.00440
---------------------------------------------------------------------
| epoch 2 | time: 15.79s | valid_acc 0.877 valid_loss 0.006
---------------------------------------------------------------------
| epoch 3 |  500/1782 batches | train_acc 0.919 train_loss 0.00382
| epoch 3 | 1000/1782 batches | train_acc 0.917 train_loss 0.00379
| epoch 3 | 1500/1782 batches | train_acc 0.916 train_loss 0.00389
---------------------------------------------------------------------
| epoch 3 | time: 15.24s | valid_acc 0.858 valid_loss 0.006
---------------------------------------------------------------------
| epoch 4 |  500/1782 batches | train_acc 0.939 train_loss 0.00297
| epoch 4 | 1000/1782 batches | train_acc 0.937 train_loss 0.00301
| epoch 4 | 1500/1782 batches | train_acc 0.936 train_loss 0.00304
---------------------------------------------------------------------
| epoch 4 | time: 15.48s | valid_acc 0.912 valid_loss 0.004
---------------------------------------------------------------------
| epoch 5 |  500/1782 batches | train_acc 0.939 train_loss 0.00295
| epoch 5 | 1000/1782 batches | train_acc 0.941 train_loss 0.00289
| epoch 5 | 1500/1782 batches | train_acc 0.942 train_loss 0.00287
---------------------------------------------------------------------
| epoch 5 | time: 15.37s | valid_acc 0.914 valid_loss 0.004
---------------------------------------------------------------------
| epoch 6 |  500/1782 batches | train_acc 0.942 train_loss 0.00282
| epoch 6 | 1000/1782 batches | train_acc 0.941 train_loss 0.00287
| epoch 6 | 1500/1782 batches | train_acc 0.941 train_loss 0.00286
---------------------------------------------------------------------
| epoch 6 | time: 14.84s | valid_acc 0.913 valid_loss 0.004
---------------------------------------------------------------------
| epoch 7 |  500/1782 batches | train_acc 0.941 train_loss 0.00284
| epoch 7 | 1000/1782 batches | train_acc 0.944 train_loss 0.00274
| epoch 7 | 1500/1782 batches | train_acc 0.943 train_loss 0.00278
---------------------------------------------------------------------
| epoch 7 | time: 13.46s | valid_acc 0.913 valid_loss 0.004
---------------------------------------------------------------------
| epoch 8 |  500/1782 batches | train_acc 0.944 train_loss 0.00273
| epoch 8 | 1000/1782 batches | train_acc 0.943 train_loss 0.00280
| epoch 8 | 1500/1782 batches | train_acc 0.944 train_loss 0.00274
---------------------------------------------------------------------
| epoch 8 | time: 13.50s | valid_acc 0.914 valid_loss 0.004
---------------------------------------------------------------------
| epoch 9 |  500/1782 batches | train_acc 0.943 train_loss 0.00275
| epoch 9 | 1000/1782 batches | train_acc 0.944 train_loss 0.00276
| epoch 9 | 1500/1782 batches | train_acc 0.944 train_loss 0.00276
---------------------------------------------------------------------
| epoch 9 | time: 13.43s | valid_acc 0.914 valid_loss 0.004
---------------------------------------------------------------------
| epoch 10 |  500/1782 batches | train_acc 0.943 train_loss 0.00278
| epoch 10 | 1000/1782 batches | train_acc 0.942 train_loss 0.00279
| epoch 10 | 1500/1782 batches | train_acc 0.945 train_loss 0.00272
---------------------------------------------------------------------
| epoch 10 | time: 13.28s | valid_acc 0.914 valid_loss 0.004
---------------------------------------------------------------------

        torchtext.data.functional.to_map_style_dataset 函数的作用是将一个迭代式的数据集(Iterable-style dataset)转换为映射式的数据集(Map-style dataset)。这个转换使得我们可以通过索引(例如:整数)更方便地访问数据集中的元素。
        在 PyTorch 中,数据集可以分为两种类型:Iterable-style 和 Map-style。Iterable-style 数据集实现了 __ iter__() 方法,可以迭代访问数据集中的元素,但不支持通过索引访问。而 Map-style 数据集实现了 __ getitem__() 和 __ len__() 方法,可以直接通过索引访问特定元素,并能获取数据集的大小。
        TorchText 是 PyTorch 的一个扩展库,专注于处理文本数据。torchtext.data.functional 中的 to_map_style_dataset 函数可以帮助我们将一个 Iterable-style 数据集转换为一个易于操作的 Map-style 数据集。这样,我们可以通过索引直接访问数据集中的特定样本,从而简化了训练、验证和测试过程中的数据处理。

3.2 使用测试数据集评估模型

print('Checking the results of test dataset.')
test_acc, test_loss = evaluate(test_dataloader)
print('test accuracy {:8.3f}'.format(test_acc))

代码输出为: 

Checking the results of test dataset.
test accuracy    0.911

你可能感兴趣的:(深度学习,自然语言处理,人工智能)