STM32驱动步进电机

硬件准备

一块主控板STM32F103C8T6

一块ULN2003步进电机驱动板

一个五线四相步进电机

方案实现

接线:

ULN2003 STM32F103C8T6
IN1 PA0
IN2 PA1
IN3 PA3
IN4 PA4
- GND
+(5V-12V) 5V

PS:①STM32如果用STLink供电,ULN2003的+可以接在STlink的5V或者STM32的5V上面

        ②如果STM32用锂电池供电,可以用3.7V锂电池,那么ULN2003需要外接电源,因为给STM32用3.7V供电,5V引脚口实际电压只有3.5V左右,带不动步进电机,注意让ULN2003与STM32供地,供地是为了让两者的电平信号一致

        ③如果STM32用5V锂电池供电,注意只能接在5V引脚口,同样ULN2003要么在外接一块电池,要么与STM32并联

接线如图所示:供电自行选择

STM32驱动步进电机_第1张图片

代码实现:

Stepper.c代码如下

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "Stepper.h"

uint8_t STEP;	// 用于存储电机正在走过的整步编号

/**
  * @brief  步进电机输出端GPIO初始化函数
  * @param  无
  * @retval 无
  */
void Stepper_GPIOInit(void)
{
	// 选择PA0,PA1,PA2,PA3分别为相A,B,C,D的输出
	RCC_APB2PeriphClockCmd(Stepper_CLK, ENABLE);
	GPIO_InitTypeDef GPIO_InitStruct;
	GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;	// 推挽输出
	GPIO_InitStruct.GPIO_Pin = Stepper_LA | Stepper_LB | Stepper_LC | Stepper_LD | StepperL_LA | StepperL_LB | StepperL_LC | StepperL_LD;
	GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(Stepper_Output_GPIO, &GPIO_InitStruct);
	
	GPIO_ResetBits(Stepper_Output_GPIO, Stepper_LA | Stepper_LB | Stepper_LC | Stepper_LD);
}

/**
  * @brief  电机停转函数
  * @param  无
  * @retval 无
  */
void Stepper_Stop(void)
{
	GPIO_ResetBits(Stepper_Output_GPIO, Stepper_LA | Stepper_LB | Stepper_LC | Stepper_LD | StepperL_LA | StepperL_LB | StepperL_LC | StepperL_LD);
}

/**
  * @brief  4拍单相整步驱动函数
  * @param  StepNum 	整步编号,0~3对应A~D
  * @param	Delay_Time_xms 		每步旋转后延时时间x ms,用于控制步进电机速度(一般需大于等于2)
  * @retval 无
  */
void Stepper_SingleStep(uint8_t StepNum, uint16_t Delay_Time_xms)
{
	switch(StepNum)
	{
		case 0:		// A
			GPIO_WriteBit(Stepper_Output_GPIO, Stepper_LA, Bit_SET);
			GPIO_WriteBit(Stepper_Output_GPIO, Stepper_LB | Stepper_LC | Stepper_LD, Bit_RESET);
			GPIO_WriteBit(Stepper_Output_GPIO, StepperL_LA, Bit_SET);
			GPIO_WriteBit(Stepper_Output_GPIO, StepperL_LB | StepperL_LC | StepperL_LD, Bit_RESET);
		break;
		case 1:		// B
			GPIO_WriteBit(Stepper_Output_GPIO, Stepper_LB, Bit_SET);	
			GPIO_WriteBit(Stepper_Output_GPIO, Stepper_LA | Stepper_LC | Stepper_LD, Bit_RESET);
			GPIO_WriteBit(Stepper_Output_GPIO, StepperL_LB, Bit_SET);	
			GPIO_WriteBit(Stepper_Output_GPIO, StepperL_LA | StepperL_LC | StepperL_LD, Bit_RESET);
		break;			
		case 2:		// C
			GPIO_WriteBit(Stepper_Output_GPIO, Stepper_LC, Bit_SET);	
			GPIO_WriteBit(Stepper_Output_GPIO, Stepper_LA | Stepper_LB | Stepper_LD, Bit_RESET);
			GPIO_WriteBit(Stepper_Output_GPIO, StepperL_LC, Bit_SET);	
			GPIO_WriteBit(Stepper_Output_GPIO, StepperL_LA | StepperL_LB | StepperL_LD, Bit_RESET);		
		break;
		case 3:		// D
			GPIO_WriteBit(Stepper_Output_GPIO, Stepper_LD, Bit_SET);
			GPIO_WriteBit(Stepper_Output_GPIO, Stepper_LA | Stepper_LB | Stepper_LC, Bit_RESET);
			GPIO_WriteBit(Stepper_Output_GPIO, StepperL_LD, Bit_SET);
			GPIO_WriteBit(Stepper_Output_GPIO, StepperL_LA | StepperL_LB | StepperL_LC, Bit_RESET);
		break;
		default: break;
	}
	Delay_ms(Delay_Time_xms);	// 延时,控制电机速度
	Stepper_Stop();				// 断电,防止电机过热
}

/**
  * @brief  步进电机按步旋转
  * @param  direction		电机旋转方向,可以是Foreward(正传)或者Reversal(反转)
  * @param	step			电机转过的步数
  * @param	Delay_Time_xms	每步旋转后延时时间x ms,用于控制步进电机速度(一般需大于等于2)
  * @retval 无
  */
void Stepper_RotateByStep(RotDirection direction, uint32_t step, uint16_t Delay_Time_xms)
{
	for (uint32_t i = 0; i < step; i ++)
	{
		if (direction == Foreward)	// 电机正传
		{
			STEP ++;
			if (STEP > 3)
			{
				STEP = 0;
			}
		}
		else if (direction == Reversal)	// 电机反转
		{
			if (STEP < 1)
			{
				STEP = 4;
			}
			STEP --;
		}
		Stepper_SingleStep(STEP, Delay_Time_xms);
	}
}

/**
  * @brief  步进电机按整数圈旋转
  * @param  direction		电机旋转方向,可以是Foreward(正传)或者Reversal(反转)
  * @param  Loop			电机旋转的圈数
  * @param  Delay_Time_xms	每步旋转后延时时间x ms,用于控制步进电机速度(一般需大于等于2)
  * @retval 
  */
void Stepper_RotateByLoop(RotDirection direction, uint32_t Loop, uint16_t Delay_Time_xms)
{
	Stepper_RotateByStep(direction, Loop * 2048, Delay_Time_xms);
}

Stepper.h代码如下

#ifndef __STEPPER_H_
#define __STEPPER_H_

// 电机的旋转方向
typedef enum 
{
	Foreward = 0,
	Reversal = 1
} RotDirection;

// 需要使用其他端口时,只需要更改以下的宏定义即可
// 这里需要保证四个输出端口同属一个GPIO
// 如果不能满足这一点,需要更改Stepper.c中初始化函数Stepper_Init和Stepper_RotateByStep中的一些变量名称
// 这里的宏定义是为了提高程序的可读性和可移植性,但使用stm32f10x.h中定义的原始名称也未尝不可
#define		Stepper_CLK				RCC_APB2Periph_GPIOA
#define		Stepper_Output_GPIO		GPIOA
#define 	Stepper_LA				GPIO_Pin_0
#define 	Stepper_LB				GPIO_Pin_1
#define 	Stepper_LC				GPIO_Pin_2
#define 	Stepper_LD				GPIO_Pin_3
#define 	StepperL_LA				GPIO_Pin_4
#define 	StepperL_LB				GPIO_Pin_5
#define 	StepperL_LC				GPIO_Pin_6
#define 	StepperL_LD				GPIO_Pin_7


void Stepper_GPIOInit(void);
void Stepper_Stop(void);
void Stepper_SingleStep(uint8_t StepNum, uint16_t Delay_Time_xms);
void Stepper_RotateByStep(RotDirection direction, uint32_t step, uint16_t Delay_Time_xms);
void Stepper_RotateByLoop(RotDirection direction, uint32_t Loop, uint16_t Delay_Time_xms);

#endif

Delay.c代码如下

#include "stm32f10x.h"

/**
  * @brief  微秒级延时
  * @param  xus 延时时长,范围:0~233015
  * @retval 无
  */
void Delay_us(uint32_t xus)
{
	SysTick->LOAD = 72 * xus;				//设置定时器重装值
	SysTick->VAL = 0x00;					//清空当前计数值
	SysTick->CTRL = 0x00000005;				//设置时钟源为HCLK,启动定时器
	while(!(SysTick->CTRL & 0x00010000));	//等待计数到0
	SysTick->CTRL = 0x00000004;				//关闭定时器
}

/**
  * @brief  毫秒级延时
  * @param  xms 延时时长,范围:0~4294967295
  * @retval 无
  */
void Delay_ms(uint32_t xms)
{
	while(xms--)
	{
		Delay_us(1000);
	}
}
 
/**
  * @brief  秒级延时
  * @param  xs 延时时长,范围:0~4294967295
  * @retval 无
  */
void Delay_s(uint32_t xs)
{
	while(xs--)
	{
		Delay_ms(1000);
	}
} 

Delay.h代码如下

#ifndef __DELAY_H
#define __DELAY_H

void Delay_us(uint32_t us);
void Delay_ms(uint32_t ms);
void Delay_s(uint32_t s);

#endif

main函数代码如下

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "Stepper.h"

int main()
{

	Stepper_GPIOInit();
	
	
		while(1)
	{	

			Stepper_RotateByLoop(Foreward, 1, 3);
		
			Stepper_RotateByLoop(Reversal, 1, 3);
		
	}
	
}

代码核心就是这些,放在STM32基础模板工程里面即可

实验现象是步进电机正转一圈以后反转一圈,循环往复

你可能感兴趣的:(STM32驱动步进电机)