- Qwen3 大模型实战:使用 vLLM 部署与函数调用(Function Call)全攻略
曦紫沐
大模型大模型部署Qwen3vLLM函数调用
文章摘要本文将带你从零开始,深入掌握如何使用Qwen3-8B大语言模型,结合vLLM进行高性能部署,并通过函数调用(FunctionCall)实现模型与外部工具的智能联动。我们将详细讲解部署命令、调用方式、代码示例及实际应用场景,帮助你快速构建基于Qwen3的智能应用。一、Qwen3简介与部署环境准备Qwen3是通义千问系列的最新一代大语言模型,具备强大的自然语言理解和生成能力,尤其在函数调用、工
- 塔能科技物联运维平台及城市照明市场竞争力分析
塔能物联运维
大数据
关于塔能科技的物联运维平台,就其在城市照明领域所具备的市场竞争力而言,可以从技术架构层面、行业适配的实际情况、市场策略方面以及所面临的种种挑战等不同角度展开剖析。一、物联运维平台的核心竞争力1.技术架构优势-全协议兼容的物联网接入能力其能够适配诸如LPWAN(涵盖LoRa、NB-IoT等)、4G/5G、Zigbee这类多种多样的协议,并且可以同时接入像照明设备、环境监测仪器以及电力设施等各不相同类
- 智能网关:物联网时代的核心枢纽
MYZR1
物联网人工智能核心板SSD2351
随着物联网技术的快速发展,智能网关作为连接物理世界与数字世界的桥梁,正发挥着越来越重要的作用。智能网关不仅是一个简单的数据传输节点,更是实现设备互联、协议转换、边缘计算的关键组件,为智慧家庭、工业物联网、智慧城市等应用场景提供了基础支撑。智能网关的核心功能智能网关的首要任务是解决不同设备间的通信协议差异问题。在物联网环境中,各类传感器、终端设备可能采用Zigbee、蓝牙、Wi-Fi、LoRa等不同
- AI Agent开发第60课-巧用QWEN3.0 0.6B:小身板扛大旗,AI界的轻骑兵
TGITCIC
AIAgent开发大全qwen3qwenaliqwen国产大模型小模型开源小模型aiagent
第一章:小模型的生存法则——为什么0.6B参数就够了?1.1参数量的"黄金分割点"模型类型参数量推理延迟(ms)并发量(QPS)Qwen-0.6B6亿15-3010万+Qwen-1.5B15亿50-805万Qwen-7B70亿200+1万数据对比显示,当参数量超过6亿后,性能提升与成本增长呈现"抛物线"关系。就像智能手机从4G到5G的迭代,用户感知不到的速度提升,却要为硬件升级买单。Qwen-0.
- 八大国产 AI 模型全景对比:阿里 Qwen、百度文心、腾讯混元、字节豆包、华为盘古、DeepSeek、Kimi、MiniMax 的技术解析与选型指南
charles666666
人工智能百度交互语言模型transformer产品经理
“在国产AI模型百花齐放的今天,企业技术决策者稍有不慎,就可能陷入性能与成本的双重困境。如何穿越技术迷雾,找到真正适配业务场景的那把钥匙?”一、开篇引言当技术选型决定企业AI落地成败,你还在凭感觉决策吗?当前国产AI模型市场,模型同质化现象严重,各厂商宣传资料中充满夸张的性能指标,但真正落地到企业实际业务场景中,却常常出现适配性不佳、部署成本不可控等问题。企业急需一份基于真实数据与场景验证的深度解
- 解决:Python通过OpenAI调用大模型API超时问题
-米兰的小铁匠
pythonlinux开发语言
业务中有时需要Python通过OpenAI调用大模型API进行问答,通过pip命令安装OpenAI:pipinstallopenai-ihttps://pypi.tuna.tsinghua.edu.cn/simple以Qwen2.5-VL-72B-Instruct为例,代码如下:fromopenaiimportOpenAI#初始化OpenAI客户端client=OpenAI(api_key='',
- 大模型【进阶】(四)QWen模型架构的解读
ReinaXue
人工智能transformer语言模型迁移学习AudioLM语音识别神经网络
一、Qwen大模型的背景Qwen(通义千问)是阿里巴巴云开发的大型语言模型(LLM)和多模态模型系列,旨在提供强大的自然语言理解、文本生成、图像理解、音频处理及工具使用能力。Qwen系列包括Qwen、Qwen1.5、Qwen2、Qwen2.5和Qwen3等版本,涵盖了从小型(0.5B参数)到超大型(480B参数)的模型规模,支持多语言(119种语言)和多模态任务(文本、图像、音频、视频)。本文将重
- 赋能未来数学课堂——基于Qwen3、LangChain与Agent架构的个性化教辅系统研究
微学AI
langchain架构
文章目录摘要引言:技术融合催生的教育新范式第一章:Qwen3+LangChain+Agent架构的核心能力与优势1.1Qwen3模型:专为复杂推理打造的“智能大脑”1.2LangChain框架:构建智能体的“灵活骨架”1.3Agent智能体:自主解决问题的“执行中枢”1.4部署与成本优势第二章:在数学教育中解决的关键问题2.1从“答案”到“过程”:深度解析与分步式辅导2.2千人千面:实现高度个性化
- 今天凌晨,字节开源 Coze,如何白嫖?
Python自动化办公社区
开源开源
大家好,这里是程序员晚枫。最近AI圈放的大招太多了,文章都更新不过来了。本周刚熬夜写完了:开源Qwen3-Coder是顶级AI阳谋,阿里的野心藏不住了,今天凌晨:Coze又开源了!开源地址:https://github.com/coze-dev一、Coze开源,对字节的战略意义本次开源了一系列项目,其中两个比较重要的仓库:CozeStudio一站式AIAgent开发工具-ttps://github
- 大模型QLoRA微调——基于Qwen2-7B的自动化病历摘要生成系统
01项目简介(1)项目背景医疗文档中包含大量的诊疗信息,例如疾病诊断、手术名称、解剖部位、药物使用以及影像和实验室检查结果。这些信息是医疗数据分析的核心,但由于医疗文本内容复杂、格式多样,提取这些关键内容具有一定挑战。为此,本项目基于Qwen-7B大语言模型,通过QLoRA微调,使其从医疗文档中识别并提取这些信息。(2)数据集介绍本项目在Yidu-S4K数据集上进行指令微调任务,该数据共计包含10
- 【代码问题】【模型部署】部署千问时,ImportError: Cannot import available module of Qwen2_5_VLForConditionalGeneration
Catching Star
pythonpytorch开发语言
多半是环境的问题,最主要的是python版本要高python==3.12.9accelerate==1.8.1pipinstallqwen-vl-utils[decord]==0.0.8peft==0.14.0transformers==4.52.3torch==2.7.0torchvision==0.22.0modelscope==1.27.1
- Qwen3 Coder——最强开源编程模型
核心要点(TL;DR)Qwen3-Coder-480B-A35B-Instruct是目前最强大的开源Agentic编码大模型,支持超长上下文和高效多轮交互,适用于复杂代码和自动化任务。新一代模型在代码生成、工具调用和多任务代理方面表现优异,提供命令行工具QwenCode,便于开发者集成到日常工作流。社区反馈积极,但模型体积庞大,对硬件有较高要求,适合有算力资源的专业用户,普通用户可关注未来小体积版
- 阿里开源Qwen3-Coder,编程大模型进入高效时代
未来智慧谷
开源Qwen3-Coder
7月23日凌晨,阿里云宣布全面开源其最新AI编程大模型Qwen3-Coder,迅速引发全球开发者关注。该模型在多项编程能力测试中刷新开源模型纪录,并在Agent任务规划、工具调用等关键场景中超越GPT-4.1等闭源模型,达到与当前顶尖编程模型Claude4相近的水平。技术架构与性能突破Qwen3-Coder采用混合专家(MoE)架构,总参数量达480B,但实际激活参数仅35B,在保证性能的同时显著
- LLM微调训练指南
小小怪 @
人工智能自然语言处理
模型选择策略开源LLM的选择需综合评估任务需求与资源限制:LLaMA-2(7B/13B/70B):商用友好,推荐使用HuggingFace格式的社区变体(如NousResearch版本)Mistral(7B):Apache2.0许可,在推理和数学任务表现突出Falcon(7B/40B):商业授权宽松,特别适合多轮对话场景硬件匹配参考:NVIDIA3090可微调7B模型(QLoRA),A100建议尝
- 【自主探索】frontier_exploration 源码解析
玳宸
ROSROS源码解析ros机器人算法
各文件运行顺序:\exploration_server\launch\exploration.launch\exploration_server\src\plugin_client.cpp\exploration_server\src\exploration_server_node.cpp\exploration_server\src\exploration_server.cpp\frontier
- 阿里 Qwen3-Coder 实战:10 个提示词让编程效率翻倍
一、Qwen3-Coder初体验:开启高效编程之门当你初次接触Qwen3-Coder时,仿佛踏入了一个充满无限可能的编程殿堂。它简洁而直观的界面,让你能迅速上手。例如,只需简单输入“创建一个简单的PythonFlaskWeb应用框架”,Qwen3-Coder便能在瞬间为你生成基础框架代码,包括项目结构、关键文件以及必要的初始化代码。这就像是有一位经验丰富的编程导师,在你刚起步时就为你搭建好了坚实的
- 国内编程大模型哪家强?2025年最新排行榜与深度解析
i建模
AI人工智能
国内编程大模型哪家强?2025年最新排行榜与深度解析发布日期:2025年3月8日关键词:大模型编程能力、DeepSeek、Qwen2.5-Max、CodeQwen、评测榜单一、大模型编程能力评测背景与核心标准近年来,大模型在代码生成、调试和算法优化等领域展现出巨大潜力。编程能力已成为衡量大模型技术实力的核心指标之一。目前主流的评测基准包括:HumanEval:由OpenAI推出,包含164个编程问
- 9、LLaMA-Factory项目微调介绍
Andy_shenzl
大模型学习llamaLLaMAFactory微调大模型LoRA
1、LLaMAFactory介绍 LLaMAFactory是一个在GitHub上开源的项目,该项目给自身的定位是:提供一个易于使用的大语言模型(LLM)微调框架,支持LLaMA、Baichuan、Qwen、ChatGLM等架构的大模型。更细致的看,该项目提供了从预训练、指令微调到RLHF阶段的开源微调解决方案。截止目前(2024年3月1日)支持约120+种不同的模型和内置了60+的数据集,同时封
- 2025年7月23日 AI 今日头条
tanak
AI日报信息差人工智能microsoft
阿里通义千问发布Qwen3-Coder,编程能力超越GPT-4.1阿里通义千问团队推出Qwen3-Coder-480B-A35B-Instruct,采用4800亿参数混合专家模型,支持256Ktoken上下文,并通过YaRN技术扩展至1Mtoken。在LiveBench、BigCodeBench等编程评测中,该模型表现优异,超越GPT-4.1,尤其在复杂代码调试和多语言支持上展现出强大能力。阿里计
- 生成式引擎优化(GEO):AI携手迈向搜索引擎智能新时代
GEO优化助手
生成式引擎优化GEO优化AI搜索优化搜索引擎人工智能GEO生成式引擎优化
生成式引擎优化(GEO):AI携手迈向搜索引擎智能新时代一、技术范式重构:从关键词匹配到语义共生在人工智能技术驱动下,搜索引擎正经历从"信息检索工具"向"认知决策伙伴"的范式转变。生成式引擎优化(GEO)作为连接内容生产与AI理解的桥梁,通过三大技术支柱重塑搜索生态:检索增强生成(RAG)架构夸克平台采用自研Qwen推理模型构建向量数据库,实现分钟级知识图谱更新。医疗设备企业通过API接口同步实时
- 【AIGC半月报】AIGC大模型启元:2024.04(下)
AIGC大模型启元:2024.04(下)(1)Llama-3(MetaLLM)(2)Eurux-8x22B(面壁智能)(3)MEGALODON(Meta上下文长度不受限的神经网络架构)(4)Phi-3Mini(微软-最强小参数大模型)(5)日日新5.0(商汤大模型5.0版)(6)中文版Llama3(7)Qwen1.5-110B(国产Llama3)(8)Vidu(国产Sora)(1)Llama-3(
- 大模型就业方向
有如下几个方向:基座模型训练工作内容:优化模型结构、数据比例,实现在各种任务上效果比较好的通用基座模型护城河:出了问题只有你能解决,给足情绪价值经验要求:必备:模型分布式框架(如deepspeed)、多机多卡训练、顶会的经验;阅读一系列LLM经典论文,例如Instruct-GPT、LORA等,从而对LLM有一个更深入、透彻的掌握。同任选:万卡集群的训练经验(包括预训练、sft、强化学习)、踩坑经验
- 《Qwen2-VL》论文精读【上】:发表于2024年10月 Qwen2-VL 迅速崛起 | 性能与GPT-4o和Claude3.5相当
OpenAppAI
多模态大模型Qwen2-VL
1、论文地址Qwen2-VL:EnhancingVision-LanguageModel’sPerceptionoftheWorldatAnyResolution2、Qwen2-VL的Github仓库地址该论文发表于2024年4月,是Qwen2-VL的续作,截止2024年11月,引用数24文章目录1论文摘要2引言3实验3.1与SOTA相比3.2定量结果3.2.1通用视觉问答3.2.1.12024年
- 使用 LLaMA 3 8B 微调一个 Reward Model:从入门到实践
茫茫人海一粒沙
Lorallama
本文将介绍如何基于Meta的LLaMA38B模型构建并微调一个RewardModel,它是构建RLHF(基于人类反馈的强化学习)系统中的关键一环。我们将使用HuggingFace的transformers、trl和peft等库,通过参数高效微调(LoRA)实现高质量RewardModel的训练。什么是RewardModel?RewardModel(RM)是RLHF流程中的评分器,它学习人类偏好:在
- LLaMA-Factory快速入门
@BangBang
LLMllama
文章目录1.背景2.环境准备2.1硬件要求2.2CUDA和Pytorch环境2.3模型下载2.4模型推理3.自定义数据集构建4.基于LoRA的sft指令微调4.1Lora微调训练4.2动态合并LoRA的推理4.3训练效果评估4.4LoRA模型合并导出5.webuiboard的使用5.1使用介绍5.2APIServer的启动与调用6进阶6.1大模型主流评测benchmark6.2部署Ollama1.
- 高仿Gucci衣服在哪里买?推荐10个渠道
高端顶级奢侈品
高仿Gucci衣服在哪里买?古驰(GUCCI)Chiodo系列灵感来源于马蹄铁固定于马蹄之上的锥形钉,早在1960年就开始出现GUCCI的珠宝及腕表的设计当中。在现任创意总监FridaGiannini的领军下,对于跨足高级珠宝领域相当积极,亮相高级珠宝新作,再将马衔炼、双G、Flora花虫图腾等品牌经典元素融入创意,并藉美钻、彩宝镶饰,映现更耀眼的时尚风华。1.淘宝淘宝作为中国最大的电商平台,拥有
- Qwen3 大模型开发实战指南(七):Qwen3 Agent 实战,释放智能交互强大潜力
寻道AI小兵
Qwen开发部署微调实战人工智能开源自然语言处理AIGC语言模型
系列篇章No.文章01Qwen3大模型开发实战指南(一):基于Transformers推理全攻略,开启智能应用大门02Qwen3大模型开发实战指南(二):基于vLLM高效推理,性能飙升03Qwen3大模型开发实战指南(三):基于GLang快速推理,服务部署快人一步04Qwen3大模型开发实战指南(四):基于Ollama极简本地部署,轻松搞定05Qwen3大模型开发实战指南(五):基于lama.cp
- 巅峰对决:文心4.5 vs DeepSeek R1 vs 通义Qwen3.0——国产大模型技术路线与场景能力深度横评
鼓掌MVP
人工智能
一、技术架构:三条路径,三种哲学文心4.5:多模态原生MoE的“全能战士”百度2025年6月开源的文心4.5系列,采用异构多专家模型(MoE)架构,其核心创新在于跨模态参数共享机制。视觉与文本专家层并非简单拼接,而是通过动态路由实现模态间知识迁移。例如在处理“看图写诗”任务时,视觉专家层提取的图像语义特征可直接注入文本生成路径,而非传统多模态模型的后期融合模式。技术亮点:FP8混合精度训练:预训练
- 深入解析LoRA:低秩适应的高效大模型微调技术
Zhong Yang
大模型微调人工智能机器学习算法
1.背景与动机随着大语言模型(如GPT-3、Llama)的参数规模突破千亿级,传统全参数微调面临三大挑战:显存爆炸:微调70B模型需数千GB显存(如Llama-270B全微调需1.2TB显存)计算成本:全参数微调的计算量随模型规模呈二次增长过拟合风险:大规模模型对少量下游数据易产生过拟合LoRA(Low-RankAdaptation)由微软研究院提出,通过低秩矩阵分解技术,将微调参数量压缩至原模型
- LoRA中的低秩矩阵估计
LoRA(Low-RankAdaptation)是一种用于微调大型语言模型(LLM)的高效方法,尤其在资源有限的环境下表现出色。其核心思想是通过低秩矩阵来近似微调过程中权重矩阵的变化,从而大幅减少需要训练的参数数量。---\paragraph{1.背景:微调与参数效率}在自然语言处理(NLP)中,大型语言模型(如GPT、BERT等)通过预训练学习了丰富的语言知识。然而,为了适应特定任务或新数据,通
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。