解 当 x ≠ 0 x\ne0 x=0时,有
f ′ ( x ) = x ( g ′ ( x ) − 2 e 2 x ) − ( g ( x ) − e 2 x ) x 2 , f'(x)=\cfrac{x(g'(x)-2e^{2x})-(g(x)-e^{2x})}{x^2}, f′(x)=x2x(g′(x)−2e2x)−(g(x)−e2x),
而
f ′ ( 0 ) = lim x → 0 f ( x ) − f ( 0 ) x − 0 = lim x → 0 g ( x ) − e 2 x x 2 = 洛必达 lim x → 0 g ′ ( x ) − 2 e 2 x 2 x . \begin{aligned} f'(0)&=\lim\limits_{x\to0}\cfrac{f(x)-f(0)}{x-0}=\lim\limits_{x\to0}\cfrac{g(x)-e^{2x}}{x^2}\\ &\xlongequal{\text{洛必达}}\lim\limits_{x\to0}\cfrac{g'(x)-2e^{2x}}{2x}. \end{aligned} f′(0)=x→0limx−0f(x)−f(0)=x→0limx2g(x)−e2x洛必达x→0lim2xg′(x)−2e2x.
因为 g ′ ( x ) g'(x) g′(x)在 x = 0 x=0 x=0处连续,所以 lim x → 0 g ′ ( x ) = g ′ ( 0 ) = 2 \lim\limits_{x\to0}g'(x)=g'(0)=2 x→0limg′(x)=g′(0)=2。但题中未设在 x = 0 x=0 x=0的某邻域内当 x ≠ 0 x\ne0 x=0时 g ′ ′ ( x ) g''(x) g′′(x)存在。故不能用洛必达法则,此时应采用凑成当时的形式求极限,实际上要去凑成 g ′ ′ ( 0 ) g''(0) g′′(0)的形式:
f ′ ( 0 ) = lim x → 0 g ′ ( x ) − 2 e 2 x 2 x = lim x → 0 ( g ′ ( x ) − g ′ ( 0 ) 2 x − 2 e 2 x − 2 2 x ) = lim x → 0 g ′ ( x ) − g ′ ( 0 ) 2 x − lim x → 0 2 e 2 x − 2 2 x = lim x → 0 1 2 g ′ ( x ) − g ′ ( 0 ) x − 0 − lim x → 0 4 e 2 x 2 = 1 2 g ′ ′ ( 0 ) − 2 = − 3 2 . \begin{aligned} f'(0)&=\lim\limits_{x\to0}\cfrac{g'(x)-2e^{2x}}{2x}=\lim\limits_{x\to0}\left(\cfrac{g'(x)-g'(0)}{2x}-\cfrac{2e^{2x}-2}{2x}\right)\\ &=\lim\limits_{x\to0}\cfrac{g'(x)-g'(0)}{2x}-\lim\limits_{x\to0}\cfrac{2e^{2x}-2}{2x}\\ &=\lim\limits_{x\to0}\cfrac{1}{2}\cfrac{g'(x)-g'(0)}{x-0}-\lim\limits_{x\to0}\cfrac{4e^{2x}}{2}=\cfrac{1}{2}g''(0)-2=-\cfrac{3}{2}. \end{aligned} f′(0)=x→0lim2xg′(x)−2e2x=x→0lim(2xg′(x)−g′(0)−2x2e2x−2)=x→0lim2xg′(x)−g′(0)−x→0lim2x2e2x−2=x→0lim21x−0g′(x)−g′(0)−x→0lim24e2x=21g′′(0)−2=−23.
再计算
lim x → 0 f ′ ( x ) = lim x → 0 x ( g ′ ( x ) − 2 e 2 x ) − ( g ( x ) − e 2 x ) x 2 = lim x → 0 ( g ′ ( x ) − g ′ ( 0 ) x − 2 e 2 x − 2 x − g ( x ) − e 2 x x 2 ) = g ′ ′ ( 0 ) − 4 − ( − 3 2 ) = − 3 2 = f ′ ( 0 ) , \begin{aligned} \lim\limits_{x\to0}f'(x)&=\lim\limits_{x\to0}\cfrac{x(g'(x)-2e^{2x})-(g(x)-e^{2x})}{x^2}\\ &=\lim\limits_{x\to0}\left(\cfrac{g'(x)-g'(0)}{x}-\cfrac{2e^{2x}-2}{x}-\cfrac{g(x)-e^{2x}}{x^2}\right)\\ &=g''(0)-4-\left(-\cfrac{3}{2}\right)=-\cfrac{3}{2}=f'(0), \end{aligned} x→0limf′(x)=x→0limx2x(g′(x)−2e2x)−(g(x)−e2x)=x→0lim(xg′(x)−g′(0)−x2e2x−2−x2g(x)−e2x)=g′′(0)−4−(−23)=−23=f′(0),
所以 f ′ ( x ) f'(x) f′(x)在 x = 0 x=0 x=0处连续。(这道题主要利用了洛必达法则的条件求解)
解
f ′ ( x ) = 2 1 + ( 2 x ) 2 = 2 1 + 4 x 2 = 2 ∑ n = 0 ∞ ( − 4 x 2 ) n = ∑ n = 0 ∞ ( − 1 ) n 2 2 n + 1 x 2 n f ( x ) = f ( 0 ) + ∫ 0 x f ′ ( t ) d t = ∑ n = 0 ∞ ( − 1 ) n 2 2 n + 1 ⋅ x 2 n + 1 2 n + 1 , f'(x)=\cfrac{2}{1+(2x)^2}=\cfrac{2}{1+4x^2}=2\sum\limits_{n=0}^\infty(-4x^2)^n=\sum\limits_{n=0}^\infty(-1)^n2^{2n+1}x^{2n}\\ f(x)=f(0)+\displaystyle\int^x_0f'(t)\mathrm{d}t=\sum\limits_{n=0}^\infty(-1)^n2^{2n+1}\cdot\cfrac{x^{2n+1}}{2n+1}, f′(x)=1+(2x)22=1+4x22=2n=0∑∞(−4x2)n=n=0∑∞(−1)n22n+1x2nf(x)=f(0)+∫0xf′(t)dt=n=0∑∞(−1)n22n+1⋅2n+1x2n+1,
记为 f ( x ) = ∑ k = 0 ∞ a k x k f(x)=\sum\limits_{k=0}^\infty a_kx^k f(x)=k=0∑∞akxk,其中
a k = { ( − 1 ) n 2 2 n + 1 2 n + 1 , k = 2 n + 1 , 0 , k = 2 n . n = 0 , 1 , 2 , ⋯ a_k=\begin{cases}\cfrac{(-1)^n2^{2n+1}}{2n+1},&k=2n+1,\\0,&k=2n.\end{cases}n=0,1,2,\cdots ak=⎩⎨⎧2n+1(−1)n22n+1,0,k=2n+1,k=2n.n=0,1,2,⋯
故有 f ( 2019 ) ( 0 ) = ( 2019 ) ! a 2019 f^{(2019)}(0)=(2019)!a_{2019} f(2019)(0)=(2019)!a2019。
当 k = 2019 k=2019 k=2019时, 2019 = 2 × 1009 + 1 , n = 1009 2019=2\times1009+1,n=1009 2019=2×1009+1,n=1009,于是
f ( 2019 ) ( 0 ) = ( 2019 ! ) ( − 1 ) 1009 2 2019 2019 = − ( 2018 ! ) 2 2019 . f^{(2019)}(0)=(2019!)\cfrac{(-1)^{1009}2^{2019}}{2019}=-(2018!)2^{2019}. f(2019)(0)=(2019!)2019(−1)100922019=−(2018!)22019.
(这道题主要利用了泰勒展开式求解)
解 先看铅直渐近线,因 lim x → 0 y = ∞ , lim x → 1 y = ∞ \lim\limits_{x\to0}y=\infty,\lim\limits_{x\to1}y=\infty x→0limy=∞,x→1limy=∞,所以 x = 0 , x = 1 x=0,x=1 x=0,x=1分别是该曲线的铅直渐近线。
再看水平渐近线。
lim x → + ∞ [ 1 x ( x − 1 ) + ln ( 1 + e x ) ] = + ∞ , \lim\limits_{x\to+\infty}\left[\cfrac{1}{x(x-1)}+\ln(1+e^x)\right]=+\infty, x→+∞lim[x(x−1)1+ln(1+ex)]=+∞,
所以沿 x → + ∞ x\to+\infty x→+∞方向无水平渐近线。
lim x → + ∞ [ 1 x ( x − 1 ) + ln ( 1 + e x ) ] = 0 , \lim\limits_{x\to+\infty}\left[\cfrac{1}{x(x-1)}+\ln(1+e^x)\right]=0, x→+∞lim[x(x−1)1+ln(1+ex)]=0,
所以沿 x → − ∞ x\to-\infty x→−∞方向有水平渐近线 y = 0 y=0 y=0。
再看斜渐近线,
lim x → + ∞ y x = lim x → + ∞ [ 1 x 2 ( x − 1 ) + 1 x ln ( 1 + e x ) ] = 0 + lim x → + ∞ 1 x ln e x ( e − x + 1 ) = lim x → + ∞ [ 1 + 1 x ln ( e − x + 1 ) ] = 1 , lim x → + ∞ ( y − x ) = lim x → + ∞ [ 1 x ( x − 1 ) + ln ( 1 + e x ) − x ] = 0 + lim x → + ∞ ln 1 + e x e x = 0. \begin{aligned} \lim\limits_{x\to+\infty}\cfrac{y}{x}&=\lim\limits_{x\to+\infty}\left[\cfrac{1}{x^2(x-1)}+\cfrac{1}{x}\ln(1+e^x)\right]\\ &=0+\lim\limits_{x\to+\infty}\cfrac{1}{x}\ln e^x(e^{-x}+1)\\ &=\lim\limits_{x\to+\infty}\left[1+\cfrac{1}{x}\ln(e^{-x}+1)\right]=1,\\ \lim\limits_{x\to+\infty}(y-x)&=\lim\limits_{x\to+\infty}\left[\cfrac{1}{x(x-1)}+\ln(1+e^x)-x\right]\\ &=0+\lim\limits_{x\to+\infty}\ln\cfrac{1+e^x}{e^x}=0. \end{aligned} x→+∞limxyx→+∞lim(y−x)=x→+∞lim[x2(x−1)1+x1ln(1+ex)]=0+x→+∞limx1lnex(e−x+1)=x→+∞lim[1+x1ln(e−x+1)]=1,=x→+∞lim[x(x−1)1+ln(1+ex)−x]=0+x→+∞limlnex1+ex=0.
所以沿 x → + ∞ x\to+\infty x→+∞方向有一条斜渐近线 y = x y=x y=x。因沿 x → − ∞ x\to-\infty x→−∞方向有水平渐近线,当然就没有斜渐近线。所以共 4 4 4条,选 ( D ) (D) (D)。(这道题主要利用了渐近线公式求解)
解 椭圆 x 2 a 2 + y 2 b 2 = 1 \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1 a2x2+b2y2=1上点 ( ξ , η ) (\xi,\eta) (ξ,η)处的切线斜率 y ′ = − b 2 ξ a 2 η y'=-\cfrac{b^2\xi}{a^2\eta} y′=−a2ηb2ξ,切线方程为
ξ a 2 x + η b 2 y = 1. \cfrac{\xi}{a^2}x+\cfrac{\eta}{b^2}y=1. a2ξx+b2ηy=1.
在两坐标轴正向的截距分别为 X = a 2 ξ , Y = b 2 η X=\cfrac{a^2}{\xi},Y=\cfrac{b^2}{\eta} X=ξa2,Y=ηb2,切线与两坐标轴围成的三角形绕 x x x轴旋转一周所成旋转体体积
V 1 = π ∫ 0 a 2 ξ [ b 2 η ( 1 − ξ a 2 x ) ] 2 d x = 1 3 a 2 b 4 ξ η 2 , V_1=\pi\displaystyle\int^\frac{a^2}{\xi}_0\left[\cfrac{b^2}{\eta}\left(1-\cfrac{\xi}{a^2}x\right)\right]^2\mathrm{d}x=\cfrac{1}{3}\cfrac{a^2b^4}{\xi\eta^2}, V1=π∫0ξa2[ηb2(1−a2ξx)]2dx=31ξη2a2b4,
要求 ( ξ , η ) (\xi,\eta) (ξ,η)使 V 1 V_1 V1为最小值,就是求 ( ξ , η ) (\xi,\eta) (ξ,η)使 u = ξ η 2 ( ξ 2 a 2 + η 2 b 2 = 1 ) u=\xi\eta^2\left(\cfrac{\xi^2}{a^2}+\cfrac{\eta^2}{b^2}=1\right) u=ξη2(a2ξ2+b2η2=1)为最大值。改写上式为
u = b 2 ( 1 − ξ 2 a 2 ) ξ , 0 < ξ < a , u=b^2\left(1-\cfrac{\xi^2}{a^2}\right)\xi,\quad0<\xiu=b2(1−a2ξ2)ξ,0<ξ<a,
有 d u d ξ = b 2 [ 1 − 3 ξ 2 a 2 ] \cfrac{\mathrm{d}u}{\mathrm{d}\xi}=b^2\left[1-\cfrac{3\xi^2}{a^2}\right] dξdu=b2[1−a23ξ2]。
d u d ξ = 0 \cfrac{\mathrm{d}u}{\mathrm{d}\xi}=0 dξdu=0,得 ξ = a 3 \xi=\cfrac{a}{\sqrt{3}} ξ=3a。
当 0 < ξ < a 3 0<\xi<\cfrac{a}{\sqrt{3}} 0<ξ<3a时, d u d ξ > 0 \cfrac{\mathrm{d}u}{\mathrm{d}\xi}>0 dξdu>0;
当 a 3 < ξ < a \cfrac{a}{\sqrt{3}}<\xi3a<ξ<a时, d u d ξ < 0 \cfrac{\mathrm{d}u}{\mathrm{d}\xi}<0 dξdu<0。
所以当 ξ = a 3 \xi=\cfrac{a}{\sqrt{3}} ξ=3a时 u u u为唯一最大值。对应的 η = 2 3 b \eta=\sqrt{\cfrac{2}{3}}b η=32b,此时 V 1 V_1 V1最小。(这道题主要利用了旋转体积分求解)
证 命 φ ( x ) = f ( x ) 1 + x \varphi(x)=\cfrac{f(x)}{1+x} φ(x)=1+xf(x),有 φ ( 0 ) = f ( 0 ) , φ ( 1 ) = 1 2 f ( 1 ) \varphi(0)=f(0),\varphi(1)=\cfrac{1}{2}f(1) φ(0)=f(0),φ(1)=21f(1),满足 φ ( 0 ) = φ ( 1 ) \varphi(0)=\varphi(1) φ(0)=φ(1),并且 φ ( x ) \varphi(x) φ(x)在 [ 0 , 1 ] [0,1] [0,1]上连续, ( 0 , 1 ) (0,1) (0,1)内可导。
φ ′ ( x ) = ( 1 + x ) f ′ ( x ) − f ( x ) ( 1 + x ) 2 , \varphi'(x)=\cfrac{(1+x)f'(x)-f(x)}{(1+x)^2}, φ′(x)=(1+x)2(1+x)f′(x)−f(x),
由罗尔定理知,存在 ξ ∈ ( 0 , 1 ) \xi\in(0,1) ξ∈(0,1)使 φ ′ ( ξ ) = 0 \varphi'(\xi)=0 φ′(ξ)=0,即 ( 1 + ξ ) f ′ ( ξ ) = f ( ξ ) (1+\xi)f'(\xi)=f(\xi) (1+ξ)f′(ξ)=f(ξ)。(这道题主要利用了构造函数求解)
证 命 φ ( x ) = f ( x ) − g ( x ) \varphi(x)=f(x)-g(x) φ(x)=f(x)−g(x),由题设有 φ ( a ) = 0 , φ ( b ) = 0 \varphi(a)=0,\varphi(b)=0 φ(a)=0,φ(b)=0。又由题设, f ( x ) f(x) f(x)与 g ( x ) g(x) g(x)在 ( a , b ) (a,b) (a,b)内存在相等的最大值。不妨设 x 1 ∈ ( a , b ) , x 2 ∈ ( a , b ) x_1\in(a,b),x_2\in(a,b) x1∈(a,b),x2∈(a,b),使 f ( x 1 ) = max [ a , b ] f ( x ) , g ( x 2 ) = max [ a , b ] g ( x ) f(x_1)=\max\limits_{[a,b]}f(x),g(x_2)=\max\limits_{[a,b]}g(x) f(x1)=[a,b]maxf(x),g(x2)=[a,b]maxg(x),且 f ( x 1 ) = g ( x 2 ) f(x_1)=g(x_2) f(x1)=g(x2)。于是 φ ( x 1 ) = f ( x 1 ) − g ( x 1 ) ⩾ 0 , φ ( x 2 ) = f ( x 2 ) − g ( x 2 ) ⩽ 0. \varphi(x_1)=f(x_1)-g(x_1)\geqslant0,\varphi(x_2)=f(x_2)-g(x_2)\leqslant0. φ(x1)=f(x1)−g(x1)⩾0,φ(x2)=f(x2)−g(x2)⩽0.。
若 φ ( x 1 ) = 0 \varphi(x_1)=0 φ(x1)=0或 φ ( x 2 ) = 0 \varphi(x_2)=0 φ(x2)=0,则取 η = x 1 \eta=x_1 η=x1或 x 2 x_2 x2,有 φ ( η ) = 0 \varphi(\eta)=0 φ(η)=0。若 φ ( x 1 ) = 0 > 0 , φ ( x 2 ) < 0 \varphi(x_1)=0>0,\varphi(x_2)<0 φ(x1)=0>0,φ(x2)<0,则由零点定理,存在 η \eta η介于 x 1 x_1 x1与 x 2 x_2 x2之间,使 φ ( η ) = 0 \varphi(\eta)=0 φ(η)=0。总之,不论何种情况,均推知存在 η ∈ ( a , b ) \eta\in(a,b) η∈(a,b)使 φ ( η ) = 0 \varphi(\eta)=0 φ(η)=0。
由 φ ( x ) \varphi(x) φ(x)在 [ a , b ] [a,b] [a,b]上有 3 3 3个零点 a , η , b a,\eta,b a,η,b。在区间 [ a , η ] [a,\eta] [a,η]与 [ η , b ] [\eta,b] [η,b]上分别用罗尔定理知,存在 ξ 1 ∈ ( a , η ) \xi_1\in(a,\eta) ξ1∈(a,η)与 ξ 2 ∈ ( η , b ) \xi_2\in(\eta,b) ξ2∈(η,b)使 φ ′ ( ξ 1 ) = φ ′ ( ξ 2 ) = 0 \varphi'(\xi_1)=\varphi'(\xi_2)=0 φ′(ξ1)=φ′(ξ2)=0。再在 [ ξ 1 , ξ 2 ] [\xi_1,\xi_2] [ξ1,ξ2]上用罗尔定理推知,存在 ξ ∈ ( ξ 1 , ξ 2 ) ⊂ ( a , b ) \xi\in(\xi_1,\xi_2)\subset(a,b) ξ∈(ξ1,ξ2)⊂(a,b)使 φ ′ ′ ( ξ ) = 0 \varphi''(\xi)=0 φ′′(ξ)=0,即 f ′ ′ ( ξ ) = g ′ ′ ( ξ ) f''(\xi)=g''(\xi) f′′(ξ)=g′′(ξ)。(这道题主要利用了构造函数求解)
证 将 f ( x ) f(x) f(x)在 x = x 0 x=x_0 x=x0处按拉格朗日余项泰勒公式展开至 n = 2 n=2 n=2,有
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + 1 3 ! f ′ ′ ′ ( ξ ) ( x − x 0 ) 3 . f(x)=f(x_0)+f'(x_0)(x-x_0)+\cfrac{1}{2!}f''(x_0)(x-x_0)^2+\cfrac{1}{3!}f'''(\xi)(x-x_0)^3. f(x)=f(x0)+f′(x0)(x−x0)+2!1f′′(x0)(x−x0)2+3!1f′′′(ξ)(x−x0)3.
取 x 0 = 0 x_0=0 x0=0可使 f ′ ( x 0 ) f'(x_0) f′(x0)消失,并分别以 x = − 1 , x = 1 x=-1,x=1 x=−1,x=1代入,得
0 = f ( 0 ) + 1 2 f ′ ′ ( 0 ) ( − 1 ) 2 + 1 6 f ′ ′ ′ ( ξ 1 ) ( − 1 ) 3 , − 1 < ξ 1 < 0. 1 = f ( 0 ) + 1 2 f ′ ′ ( 0 ) + 1 6 f ′ ′ ′ ( ξ 2 ) , 0 < ξ 2 < 1. \begin{aligned} &0=f(0)+\cfrac{1}{2}f''(0)(-1)^2+\cfrac{1}{6}f'''(\xi_1)(-1)^3,-1<\xi_1<0.\\ &1=f(0)+\cfrac{1}{2}f''(0)+\cfrac{1}{6}f'''(\xi_2),0<\xi_2<1. \end{aligned} 0=f(0)+21f′′(0)(−1)2+61f′′′(ξ1)(−1)3,−1<ξ1<0.1=f(0)+21f′′(0)+61f′′′(ξ2),0<ξ2<1.
两式相减得 1 = 1 6 ( f ′ ′ ′ ( ξ 2 ) + f ′ ′ ′ ( ξ 1 ) ) 1=\cfrac{1}{6}(f'''(\xi_2)+f'''(\xi_1)) 1=61(f′′′(ξ2)+f′′′(ξ1))。
因为 f ′ ′ ′ ( x ) f'''(x) f′′′(x)连续, 1 2 ( f ′ ′ ′ ( ξ 2 ) + f ′ ′ ′ ( ξ 1 ) ) \cfrac{1}{2}(f'''(\xi_2)+f'''(\xi_1)) 21(f′′′(ξ2)+f′′′(ξ1))介于 f ′ ′ ′ ( ξ 2 ) f'''(\xi_2) f′′′(ξ2)与 f ′ ′ ′ ( ξ 1 ) f'''(\xi_1) f′′′(ξ1)之间。由连续函数介值定理,至少存在一点 ξ ∈ [ ξ 1 , ξ 2 ] \xi\in[\xi_1,\xi_2] ξ∈[ξ1,ξ2]使 f ′ ′ ′ ( ξ ) = 1 2 ( f ′ ′ ′ ( ξ 2 ) + f ′ ′ ′ ( ξ 1 ) ) f'''(\xi)=\cfrac{1}{2}(f'''(\xi_2)+f'''(\xi_1)) f′′′(ξ)=21(f′′′(ξ2)+f′′′(ξ1)),这就推得存在 ξ ∈ ( − 1 , 1 ) \xi\in(-1,1) ξ∈(−1,1)使 f ′ ′ ′ ( ξ ) = 3 f'''(\xi)=3 f′′′(ξ)=3。(这道题主要利用了泰勒展开式求解)
解
lim x → 0 tan ( tan x ) − sin ( sin x ) x − sin x = tan ( tan x ) − tan ( sin x ) + tan ( sin x ) − sin ( sin x ) x − sin x = sec 2 ξ ⋅ ( tan x − sin x ) x − sin x + tan ( sin x ) − sin ( sin x ) x − sin x . \begin{aligned} \lim\limits_{x\to0}\cfrac{\tan(\tan x)-\sin(\sin x)}{x-\sin x}&=\cfrac{\tan(\tan x)-\tan(\sin x)+\tan(\sin x)-\sin(\sin x)}{x-\sin x}\\ &=\cfrac{\sec^2\xi\cdot(\tan x-\sin x)}{x-\sin x}+\cfrac{\tan(\sin x)-\sin(\sin x)}{x-\sin x}. \end{aligned} x→0limx−sinxtan(tanx)−sin(sinx)=x−sinxtan(tanx)−tan(sinx)+tan(sinx)−sin(sinx)=x−sinxsec2ξ⋅(tanx−sinx)+x−sinxtan(sinx)−sin(sinx).
其中 sin x < ξ < tan x \sin x<\xi<\tan x sinx<ξ<tanx,来自拉格朗日中值定理。
由 lim x → 0 sec 2 ξ = sec 2 0 = 1 , tan x − sin x = sin x ⋅ ( 1 − cos x ) cos x \lim\limits_{x\to0}\sec^2\xi=\sec^20=1,\tan x-\sin x=\cfrac{\sin x\cdot(1-\cos x)}{\cos x} x→0limsec2ξ=sec20=1,tanx−sinx=cosxsinx⋅(1−cosx),
lim x → 0 sec 2 ξ ⋅ ( tan x − sin x ) x − sin x = lim x → 0 sec 2 ξ ⋅ sin x ( 1 − cos x ) ( x − sin x ) cos x = lim x → 0 x 3 2 ( x − sin x ) = lim x → 0 3 x 2 2 ( 1 − cos x ) = 3. \begin{aligned} \lim\limits_{x\to0}\cfrac{\sec^2\xi\cdot(\tan x-\sin x)}{x-\sin x}&=\lim\limits_{x\to0}\cfrac{\sec^2\xi\cdot\sin x(1-\cos x)}{(x-\sin x)\cos x}\\ &=\lim\limits_{x\to0}\cfrac{x^3}{2(x-\sin x)}=\lim\limits_{x\to0}\cfrac{3x^2}{2(1-\cos x)}=3. \end{aligned} x→0limx−sinxsec2ξ⋅(tanx−sinx)=x→0lim(x−sinx)cosxsec2ξ⋅sinx(1−cosx)=x→0lim2(x−sinx)x3=x→0lim2(1−cosx)3x2=3.
其中第二个等式来自等价无穷小代换,第三个等式来自洛必达法则,第四个来自等价无穷小代换。
对第二项作变量代换 sin x = t \sin x=t sinx=t,有
lim x → 0 tan ( sin x ) − sin ( sin x ) x − sin x = lim t → 0 tan t − sin t arcsin t − t = lim t → 0 sec 2 t − cos t 1 1 − t 2 − 1 = lim t → 0 1 − cos 3 t 1 − ( 1 − t 2 ) 1 2 = lim t → 0 3 cos 2 t sin t t ( 1 − t 2 ) − 1 2 = 3. \begin{aligned} \lim\limits_{x\to0}\cfrac{\tan(\sin x)-\sin(\sin x)}{x-\sin x}&=\lim\limits_{t\to0}\cfrac{\tan t-\sin t}{\arcsin t-t}=\lim\limits_{t\to0}\cfrac{\sec^2t-\cos t}{\cfrac{1}{\sqrt{1-t^2}}-1}\\ &=\lim\limits_{t\to0}\cfrac{1-\cos^3t}{1-(1-t^2)^{\frac{1}{2}}}=\lim\limits_{t\to0}\cfrac{3\cos^2t\sin t}{t(1-t^2)^{-\frac{1}{2}}}=3. \end{aligned} x→0limx−sinxtan(sinx)−sin(sinx)=t→0limarcsint−ttant−sint=t→0lim1−t21−1sec2t−cost=t→0lim1−(1−t2)211−cos3t=t→0limt(1−t2)−213cos2tsint=3.
所以原式 = 3 + 3 = 6 =3+3=6 =3+3=6。(这道题主要利用了拉格朗日中值定理求解)
证 因为 f ( 0 ) = 0 f(0)=0 f(0)=0,不妨认为 0 < x 1 < x 2 0
f ( x 1 + x 2 ) − f ( x 1 ) − f ( x 2 ) = [ f ( x 1 + x 2 ) − f ( x 2 ) ] − [ f ( x 1 ) − f ( 0 ) ] = f ′ ( ξ 2 ) x 1 − f ′ ( ξ 1 ) x 1 = f ′ ′ ( ξ ) ( ξ 2 − ξ 1 ) x 1 . \begin{aligned} f(x_1+x_2)-f(x_1)-f(x_2)&=[f(x_1+x_2)-f(x_2)]-[f(x_1)-f(0)]\\ &=f'(\xi_2)x_1-f'(\xi_1)x_1=f''(\xi)(\xi_2-\xi_1)x_1. \end{aligned} f(x1+x2)−f(x1)−f(x2)=[f(x1+x2)−f(x2)]−[f(x1)−f(0)]=f′(ξ2)x1−f′(ξ1)x1=f′′(ξ)(ξ2−ξ1)x1.
其中 0 < ξ 1 < x 1 < x 2 < ξ 2 < x 1 + x 2 , ξ 1 < ξ < ξ 2 0<\xi_1
证 命 φ ( x ) = f ( x ) e g ( x ) \varphi(x)=f(x)e^{g(x)} φ(x)=f(x)eg(x),则 φ ′ ( x ) = e g ( x ) [ f ′ ( x ) + f ( x ) g ′ ( x ) ] \varphi'(x)=e^{g(x)}[f'(x)+f(x)g'(x)] φ′(x)=eg(x)[f′(x)+f(x)g′(x)]。设 f ( x ) f(x) f(x)在区间 ( a , b ) (a,b) (a,b)内存在两个或多于两个零点,则由罗尔定理知, φ ′ ( x ) \varphi'(x) φ′(x)即 f ′ ( x ) + f ( x ) g ′ ( x ) f'(x)+f(x)g'(x) f′(x)+f(x)g′(x)在 ( a , b ) (a,b) (a,b)内至少存在一个零点,与 f ′ ( x ) + f ( x ) g ′ ( x ) ≠ 0 f'(x)+f(x)g'(x)\ne0 f′(x)+f(x)g′(x)=0矛盾。故 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内至多有一个零点。(这道题主要利用了反证法求解)
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。