一站式解决目标检测需求,从入门到精通!
# 创建虚拟环境
conda create -n yolov10 python=3.9
conda activate yolov10
# 安装核心库
pip install ultralytics torch==2.0.0 --extra-index-url https://download.pytorch.org/whl/cu118
from ultralytics import YOLO
# 加载预训练模型
model = YOLO('yolov10s.pt') # 可选:n/s/m/l/x
# 执行推理(支持图片/视频/摄像头)
results = model.predict('bus.jpg', save=True)
✅ 结果自动保存到 runs/detect/predict/
核心突破:
# 加载自定义模型
model = YOLO('yolov10_defect.pt')
# 实时视频流检测
results = model.predict('rtsp://factory_cam',
conf=0.7,
classes=[0,1,2], # 0=划痕 1=漏焊 2=变形
save=True)
行为分析代码:
def analyze_sheep_health(detections):
lying_time = 0
for obj in detections:
if obj['class'] == 'lying':
lying_time += obj['duration']
return lying_time > 120*60 # 躺卧超2小时报警
# 统计红细胞数量
results = model('blood_sample.png', classes=[1])
red_blood_cell_count = len(results[0].boxes)
print(f"红细胞数量:{red_blood_cell_count}")
模型 | AP(%) | 参数量(M) | 速度(FPS) |
---|---|---|---|
YOLOv10n | 38.5 | 2.3 | 450 |
YOLOv8n | 37.3 | 3.2 | 380 |
YOLOv10x | 55.2 | 94.1 | 110 |
测试环境:RTX 4090, COCO数据集