TensorFlow解决MNIST数字识别问题

TensorFlow解决MNIST数字识别问题

废话

这个MNIST数字识别问题是我实现的第一个神经网络,虽然过程基本上都是对着书上的代码敲,但还是对神经网络的训练过程有了一定的了解,同时也复习了前面几章关于TensorFlow和神经网络的一些基本概念。

MNIST介绍

MNIST是一个非常有名的手写体数字识别数据集,通常用来作为深度学习的入门样例。

MNIST的数据集可以在http://yann.lecun.com/exdb/mnist/下载

TensorFlow提供了一个类来处理MNIST数据,能够自动下载并转化MNIST数据的格式。

训练神经网络

直接先贴代码

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# MNIST相关常数
INPUT_NODE = 784
OUTPUT_NODE = 10

# 神经网络参数
LAYER1_NODE = 500
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99


def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
    if avg_class == None:
        layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
        return tf.matmul(layer1, weights2) + biases2
    else:
        layer1 = tf.nn.relu(
            tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1)
        )
        return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2)


def train(mnist):
    x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')

    weights1 = tf.Variable(
        tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
    biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
    weights2 = tf.Variable(
        tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
    biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))

    y = inference(x, None, weights1, biases1, weights2, biases2)

    global_step = tf.Variable(0, trainable=False)

    variable_averages = tf.train.Ex

你可能感兴趣的:(自然语言处理)