【大模型框架】LLM大模型开源RAG框架汇总

前言

本文搜集了一些开源的基于LLM的RAG(Retrieval-Augmented Generation)框架,旨在吸纳业界最新的RAG应用方法与思路。如有错误或者意见可以提出,同时也欢迎大家把自己常用而这里未列出的框架贡献出来,感谢~

RAG应用框架

  1. RAGFlow
  • 项目地址:github.com/infiniflow/…

  • 简介:RAGFlow 是一款基于深度文档理解构建的开源 RAG(Retrieval-Augmented Generation)引擎。RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。

  • 特性:OCR、内置多种文档切分模板、文档切分可视化并且可修改、兼容多种文档数据类型

  • 架构: 【大模型框架】LLM大模型开源RAG框架汇总_第1张图片

  • 硬件要求:CPU >= 4 核、RAM >= 16 GB、Disk >= 50 GB、Docker >= 24.0.0 & Docker Compose >= v2.26.1

  1. QAnything
  • 项目地址: github.com/netease-you…

  • 简介:QAnything ( Q uestion based on Anything ) 是贡献支持任何格式文件或数据库的本地知识库问答系统,可断网安装使用。您的任何格式的本地文件都可以往里扔,即可获得准确、快速、靠谱的问答体验。

  • 特性:支持离线安装使用、跨语种问答粗排和精排的二阶段召回

  • 架构: 【大模型框架】LLM大模型开源RAG框架汇总_第2张图片

  • 硬件要求:最低CPU即可;使用GPU环境需要NVIDIA GPU Memory >= 4GB (use OpenAI API) & Docker De

你可能感兴趣的:(开源,人工智能,LLM,大模型,AI大模型,RAG,本地化部署)