AI大模型学习路线:(非常详细)AI大模型学习路线,收藏这一篇就够了!_ai学习路线

1. 打好基础:数学与编程
数学基础
  • 线性代数:理解矩阵、向量、特征值、特征向量等概念。

    • 推荐课程:Khan Academy的线性代数课程、MIT的线性代数公开课。
  • 微积分:掌握导数、积分、多变量微积分等基础知识。

    • 推荐课程:Khan Academy的微积分课程、MIT的微积分公开课。
  • 概率与统计:理解概率分布、贝叶斯定理、统计推断等概念。

    • 推荐课程:Khan Academy的概率与统计课程、Coursera的“Probability and Statistics”课程。
编程基础
  • Python:作为AI领域的主要编程语言,Python是必须掌握的。

    • 推荐课程:Codecademy的Python课程、Coursera的“Python for Everybody”系列。
  • 数据结构与算法:理解基本的数据结构(如数组、链表、树、图)和算法(如排序、搜索、动态规划)。

    • 推荐课程:Coursera的“Data Structures and Algorithms”系列、LeetCode进行算法练习。
2. 入门机器学习
理论学习
  • 经典书籍:

    • 《机器学习》 - 周志华
    • 《Pattern Recognition and Machine Learning》 - Christopher Bishop
  • 在线课程:

    • Coursera的“Machine Learning”课程(Andrew Ng教授)
    • Udacity的“Intro to Machine Learning”课程
实践项目
  • Kaggle:参加Kaggle的入门竞赛,实战练习机器学习算法。
  • 项目实现:尝试实现一些经典的机器学习算法,如线性回归、逻辑回归、决策树、随机森林等。
3. 深入深度学习
理论学习
  • 经典书籍:

    • 《深度学习》 - Ian Goodfellow, Yoshua Bengio, Aaron Courville
  • 在线课程:

    • Coursera的“Deep Learning Specialization”系列(Andrew Ng教授)
    • Fast.ai的“Practical Deep Learning for Coders”课程
实践项目
  • 框架学习:学习深度学习框架如TensorFlow和PyTorch。

    • 推荐资源:TensorFlow和PyTorch的官方文档和教程。
  • 实现经典模型:尝试实现一些经典的深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等。

4. 探索大模型
理论学习
  • Transformer架构:理解Transformer架构的基本原理,这是大模型(如GPT-3、BERT等)的基础。

    • 推荐资源:论文《Attention is All You Need》、Jay Alammar的Transformer可视化博客。
  • 预训练模型:了解预训练和微调的概念。

    • 推荐资源:Hugging Face的博客和文档。
实践项目
  • Hugging Face:使用Hugging Face的Transformers库,加载和微调预训练模型。

    • 推荐资源:Hugging Face的官方教程和示例代码。
  • 项目实现:尝试使用预训练模型进行文本生成、情感分析、问答系统等任务。

5. 进阶与应用
高级课程
  • 强化学习:深入学习强化学习,理解策略优化、Q-learning等概念。

    • 推荐课程:Coursera的“Reinforcement Learning Specialization”课程、Udacity的“Deep Reinforcement Learning”课程。
  • 论文阅读:定期阅读最新的AI研究论文,跟踪领域前沿。

    • 推荐资源:arXiv、Google Scholar。
实践项目
  • 开源项目:参与开源项目,贡献代码,提升实战能力。

    • 推荐平台:GitHub。
  • 实战应用:尝试将大模型应用于实际问题,如自动驾驶、智能客服、医疗诊断等。

6. 社区与资源
参与社区
  • 论坛与讨论组:加入AI相关的论坛和讨论组,如Reddit的Machine Learning社区、Stack Overflow等。
  • 线下活动:参加AI相关的线下活动和会议,如NeurIPS、ICML等。
持续学习
  • 博客和播客:关注AI领域的博客和播客,如Towards Data Science、Data Skeptic等。
  • 在线资源:定期浏览AI相关的在线资源和新闻,保持对领域动态的了解。
结语

img

自学AI大模型需要扎实的基础知识、系统的学习路线和持续的实践与探索。希望这条学习路线能为新手小白们提供一个清晰的方向,帮助大家更好地进入和发展在AI大模型领域。祝大家学习顺利,早日成为AI领域的专家!

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 有需要的小伙伴,可以 扫描下方二维码领取↓↓↓

[CSDN大礼包:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

学会后的收获:

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

获取方式:
有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】

你可能感兴趣的:(人工智能,学习,java,大模型,大语言模型,语言模型,程序员)