- 移动端城市区县二级联动选择功能实现包
good2know
本文还有配套的精品资源,点击获取简介:本项目是一套为移动端设计的jQuery实现方案,用于简化用户在选择城市和区县时的流程。它包括所有必需文件:HTML、JavaScript、CSS及图片资源。通过动态更新下拉菜单选项,实现城市到区县的联动效果,支持数据异步加载。开发者可以轻松集成此功能到移动网站或应用,并可基于需求进行扩展和优化。1.jQuery移动端解决方案概述jQuery技术简介jQuery
- (二)SAP Group Reporting (GR) 核心子模块功能及数据流向架构解析
数据如何从子公司流转到合并报表的全过程,即数据采集→合并引擎→报表输出,特别是HANA内存计算如何优化传统ETL瓶颈。SAPGroupReporting(GR)核心模块功能及数据流向的架构解析,涵盖核心组件、数据处理流程和关键集成点,适用于S/4HANA1809+版本:一、核心功能模块概览模块功能关键事务码/FioriApp数据采集(DataCollection)整合子公司财务数据(SAP/非SA
- MotionLCM 部署优化 踩坑解决bug
AI算法网奇
aigc与数字人深度学习宝典文生motion
目录依赖项windowstorchok:渲染黑白图问题解决:humanml3d:sentence-t5-large下载数据:报错:Nomodulenamed'sentence_transformers'继续报错:fromtransformers.integrationsimportCodeCarbonCallback解决方法:推理相关转mesh:module‘matplotlib.cm‘hasno
- Flowable 高级扩展:自定义元素与性能优化实战
练习时长两年半的程序员小胡
Flowable流程引擎实战指南流程图flowableBPMN流程引擎java
在前五篇文章中,我们从基础概念、流程设计、API实战、SpringBoot集成,到外部系统协同,逐步构建了Flowable的应用体系。但企业级复杂场景中,原生功能往往难以满足定制化需求——比如需要特殊的审批规则网关、与决策引擎联动实现动态路由,或是在高并发场景下优化流程引擎性能。本文将聚焦Flowable的高级扩展能力,详解如何自定义流程元素、集成规则引擎,并掌握大型系统中的性能调优策略。一、自定
- 企业级区块链平台Hyperchain核心原理剖析
boyedu
区块链区块链企业级区块链平台Hyperchain
Hyperchain作为国产自主可控的企业级联盟区块链平台,其核心原理围绕高性能共识、隐私保护、智能合约引擎及可扩展架构展开,通过多模块协同实现企业级区块链网络的高效部署与安全运行。以下从核心架构、关键技术、性能优化、安全机制、应用场景五个维度展开剖析:一、核心架构:分层解耦与模块化设计Hyperchain采用分层架构,将区块链功能解耦为独立模块,支持灵活组合与扩展:P2P网络层由验证节点(VP)
- 编程算法:技术创新的引擎与业务增长的核心驱动力
在数字经济时代,算法已成为推动技术创新与业务增长的隐形引擎。从存内计算突破冯·诺依曼瓶颈,到动态规划优化万亿级金融交易,编程算法正在重塑产业竞争格局。一、存内计算:突破冯·诺依曼瓶颈的算法革命1.1存内计算的基本原理传统计算架构中90%的能耗消耗在数据搬运上。存内计算(Processing-in-Memory)通过直接在存储单元执行计算,实现能效10-100倍提升:#传统计算vs存内计算能耗模型i
- JVM 内存分配与回收策略:从对象创建到内存释放的全流程
在JVM的运行机制中,内存分配与回收策略是连接对象生命周期与垃圾收集器的桥梁。它决定了对象在堆内存中的创建位置、存活过程中的区域迁移,以及最终被回收的时机。合理的内存分配策略能减少GC频率、降低停顿时间,是优化Java应用性能的核心环节。本文将系统解析JVM的内存分配规则、对象晋升机制,以及实战中的内存优化技巧。一、对象优先在Eden区分配:新生代的“临时缓冲区”大多数情况下,Java对象在新生代
- 猎板 PCB 控深槽工艺:5G 基站散热模块的关键支撑
猎板PCB黄浩
5G运维数据库
PCB控深槽工艺在5G基站散热模块中的关键作用:猎板PCB的技术突破在5G基站的密集高频信号与高功率运行环境下,散热性能直接决定了设备的稳定性和寿命。猎板PCB通过创新性的控深槽工艺(控深锣/控深铣),结合材料科学与结构优化,为5G基站散热模块提供了高精度、高可靠性的解决方案,有效攻克了高热负荷下的技术瓶颈。一、5G基站散热的核心挑战热负荷激增:5G基站的射频功放(PA)、电源管理模块等器件功耗显
- Redis + Caffeine 实现高效的两级缓存架构
周童學
Java缓存redis架构
Redis+Caffeine实现高效的两级缓存架构引言在现代高并发系统中,缓存是提升系统性能的关键组件之一。传统的单一缓存方案往往难以同时满足高性能和高可用性的需求。本文将介绍如何结合Redis和Caffeine构建一个高效的两级缓存系统,并通过三个版本的演进展示如何逐步优化代码结构。项目源代码:github地址、gitee地址两级缓存架构概述两级缓存通常由本地缓存(如Caffeine)和分布式缓
- 旧系统UI焕新陷阱:保留业务习惯与引入新交互的平衡点把控
贝格前端工场
ui交互
摘要**想给老旧系统换上“高颜值新衣”,却遭遇员工集体吐槽“不会用”?满心期待新交互能提升效率,结果用户操作频频出错,业务进度反而被拖慢?旧系统UI焕新本是优化体验的好机会,可在保留多年养成的业务操作习惯,与引入更先进便捷的新交互方式之间,却横亘着巨大鸿沟。稍有不慎,就会陷入“改了不如不改”的尴尬境地。这场关于“守旧”与“创新”的博弈,究竟该如何破局?一、旧系统UI焕新:一场甜蜜又棘手的改造工程旧
- Pktgen-DPDK:开源网络测试工具的深度解析与应用
艾古力斯
本文还有配套的精品资源,点击获取简介:Pktgen-DPDK是基于DPDK的高性能流量生成工具,适用于网络性能测试、硬件验证及协议栈开发。它支持多种网络协议,能够模拟高吞吐量的数据包发送。本项目通过利用DPDK的高速数据包处理能力,允许用户自定义数据包内容,并实现高效的数据包管理与传输。文章将指导如何安装DPDK、编译Pktgen、配置工具以及使用方法,最终帮助开发者和网络管理员深入理解并优化网络
- 大模型量化终极对决:FP8 vs AWQ INT4,谁才是性能与精度的王者?
曦紫沐
大模型人工智能大模型量化FP8AWQ_INT4
摘要在大模型部署与优化中,量化技术是突破性能瓶颈的关键。FP8量化与AWQINT4量化作为当前主流方案,分别以“高精度”和“极致压缩”为核心优势。本文通过表格对比二者的数据格式、精度损失、硬件依赖及适用场景,助您在不同需求下精准选择最优方案。一、数据格式:浮点与整数的底层差异FP8量化采用浮点数(FP8),包含E4M3(4位阶码+3位尾数)和E5M2(5位阶码+2位尾数)两种格式,保留动态范围;而
- 分布式链路追踪系统架构设计:从理论到企业级实践
ma451152002
java分布式系统架构
分布式链路追踪系统架构设计:从理论到企业级实践本文深入探讨分布式链路追踪系统的架构设计原理、关键技术实现和企业级应用实践,为P7架构师提供完整的技术方案参考。目录引言:分布式链路追踪的重要性核心概念与技术原理系统架构设计数据模型与协议标准核心组件架构设计性能优化与扩展性设计企业级实施策略技术选型与对比分析监控与运维体系未来发展趋势P7架构师面试要点引言:分布式链路追踪的重要性微服务架构下的挑战在现
- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 百度地图 雷达/地理编码 功能使用
安卓开发者
目录(?)[-]地图雷达基本使用首先你需要在你的API控制台注册你的雷达初始化并注入你的信息开始上传单次上传定时重复上传取回信息打完收工元古巨坑地理编码最近一直在优化软件的bug..然后后面可能又要大改..所以趁这两天有时间赶紧码两篇博文..=.=地图功能可以说是现在APP中最常用的功能…呃..之一..不管是电商,社交,o2o,b2c,p2p,锟斤拷,烫烫烫都需要用地图来辅助..博客里基本的地图实
- 量子计算解决气候变化:科学家找到了新方法
大力出奇迹985
量子计算
气候变化已成为全球面临的严峻挑战,传统计算方法在应对与之相关的复杂问题时存在诸多局限。而量子计算作为新兴技术,为解决气候变化难题带来曙光。本文深入剖析科学家利用量子计算应对气候变化的新方法。量子计算凭借独特的量子比特与量子特性,在加速气候模型计算、优化模型参数、预测极端天气事件等方面展现出巨大优势。同时,在可再生能源整合、电网管理、碳捕获等实际应用场景中也发挥着重要作用。尽管目前面临硬件和算法等方
- 程序员必备:10 个提升代码质量的工具
大力出奇迹985
宠物
在软件开发过程中,代码质量对项目的成功起着决定性作用。高质量的代码不仅易于维护和扩展,还能有效降低成本并提升可靠性。本文精心挑选了10个程序员必备工具,助力提升代码质量。这些工具涵盖代码格式化、静态分析、代码审查、测试、性能优化、安全扫描、版本控制、依赖管理、代码生成以及文档生成等多个关键领域。通过使用它们,开发者能够高效地发现并解决代码中的潜在问题,遵循最佳实践,提升代码的可读性、可维护性与安全
- 用 Python 开发小游戏:零基础也能做出《贪吃蛇》
本文专为零基础学习者打造,详细介绍如何用Python开发经典小游戏《贪吃蛇》。无需复杂编程知识,从环境搭建到代码编写、功能实现,逐步讲解核心逻辑与操作。涵盖Pygame库的基础运用、游戏界面设计、蛇的移动与食物生成规则等,让新手能按步骤完成开发,同时融入SEO优化要点,帮助读者轻松入门Python游戏开发,体验从0到1做出游戏的乐趣。一、为什么选择用Python开发《贪吃蛇》对于零基础学习者来说,
- GPT-4 在 AIGC 中的微调技巧:让模型更懂你的需求
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络AIGCai
GPT-4在AIGC中的微调技巧:让模型更懂你的需求关键词:GPT-4、AIGC、模型微调、监督学习、指令优化、过拟合预防、个性化生成摘要:AIGC(人工智能生成内容)正在重塑内容创作行业,但通用的GPT-4模型可能无法精准匹配你的垂直需求——比如写电商爆款文案时总“跑题”,或生成技术文档时专业术语不够。本文将用“教小朋友学画画”的通俗类比,从微调的底层逻辑讲到实战技巧,带你掌握让GPT-4“更懂
- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- 【大模型微调实战】4. P-Tuning爆款文案生成:让模型学会小红书“爽感”写作,转化率提升300%
AI_DL_CODE
大模型微调P-Tuning小红书文案爆款生成情绪强化自然语言生成提示工程
摘要:在内容营销竞争白热化的当下,普通文案已难以突破流量壁垒。本文聚焦P-Tuning技术在小红书爆款文案生成中的落地应用,通过参数化提示向量优化,将抽象的“爽感”写作转化为可量化、可训练的技术指标。文中提出“六步成文法”,从情绪化数据集构建到爆款元素复刻,完整拆解如何用RTX3060级显卡实现0.1%参数量微调,使文案点击率从2.1%提升至8.7%,爆文率提高5倍,单条文案带货超8万元。核心创新
- Spark SQL架构及高级用法
Aurora_NeAr
sparksql架构
SparkSQL架构概述架构核心组件API层(用户接口)输入方式:SQL查询;DataFrame/DatasetAPI。统一性:所有接口最终转换为逻辑计划树(LogicalPlan),进入优化流程。编译器层(Catalyst优化器)核心引擎:基于规则的优化器(Rule-BasedOptimizer,RBO)与成本优化器(Cost-BasedOptimizer,CBO)。处理流程:阶段输入输出关键动
- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 前端数据库:IndexedDB从基础到高级使用指南
文章目录前端数据库:IndexedDB从基础到高级使用指南引言一、IndexedDB概述1.1什么是IndexedDB1.2与其他存储方案的比较二、基础使用2.1打开/创建数据库2.2基本CRUD操作添加数据读取数据更新数据删除数据三、高级特性3.1复杂查询与游标3.2事务高级用法3.3性能优化技巧四、实战案例:构建离线优先的待办事项应用4.1数据库设计4.2同步策略实现五、常见问题与解决方案5.
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- 如何运用深度学习打造高效AI人工智能系统
AI智能探索者
AIAgent智能体开发实战人工智能深度学习ai
如何运用深度学习打造高效AI人工智能系统关键词:深度学习、AI系统、神经网络、模型优化、实战开发摘要:本文将从深度学习的核心概念出发,结合生活实例和代码实战,系统讲解如何构建高效AI系统。我们会拆解数据准备、模型设计、训练优化、部署落地的全流程,揭秘“数据-模型-训练-推理”的协同机制,并通过具体案例演示从0到1开发AI系统的关键技巧,帮助开发者掌握打造高效AI系统的底层逻辑。背景介绍目的和范围在
- 零数学基础理解AI核心概念:梯度下降可视化实战
九章云极AladdinEdu
人工智能gpu算力深度学习pytorchpython语言模型opencv
点击“AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力,按量计费,灵活弹性,顶级配置,学生专属优惠。用Python动画演示损失函数优化过程,数学公式具象化读者收获:直观理解模型训练本质,破除"数学恐惧症"当盲人登山者摸索下山路径时,他本能地运用了梯度下降算法。本文将用动态可视化技术,让你像感受重力一样理解AI训练的核心原理——无需任何数学公式推导。一、梯度下降:AI世界的"万有
- 非欧空间计算加速:图神经网络与微分几何计算的GPU优化(流形数据的内存布局优化策略)
九章云极AladdinEdu
空间计算神经网络人工智能gpu算力算法java开发语言
一、非欧空间计算的革命性意义与核心挑战在三维形状分析、社交网络建模、分子动力学模拟等领域,非欧几里得空间数据(流形数据)的处理正推动人工智能技术向更复杂的几何结构迈进。传统欧式空间优化方法在处理流形数据时面临根本性局限:黎曼度量导致距离计算失效、局部坐标系动态变化引发内存访问模式混乱、曲率变化影响并行计算效率。本文提出基于分块流形存储(BlockedManifoldStorage,BMS)与层次化
- 亚马逊广告进阶指南:广告转化的深层逻辑
2501_92052613
人工智能
”为什么广告点击量很高但转化率始终上不去?“”如何在不增加预算的情况下降低ACOS?“”自动广告和手动广告到底哪种更适合新品?“”明明出价很高为什么广告排名还是上不去?“”广告数据每天波动很大,怎样才能科学分析?“这些问题看似独立,实则都指向一个核心——亚马逊广告的转化逻辑。作为从业多年的广告优化师,我想通过这篇文章,带大家深层次揭秘亚马逊广告的转化机制,并分享我们团队是如何通过科学方法实现ACO
- 大数据精准获客并实现高转化的核心思路和实现方法
2401_88470328
大数据精准获客数据分析数据挖掘大数据需求分析bigdata
大数据精准获客并实现高转化的核心思路和实现方法大数据精准获客并实现高转化的核心思路和实现方法在当今信息爆炸的时代,企业如何通过海量的数据精准获取潜在客户,并提高转化率,已经成为营销策略中的关键环节。大数据精准获客的核心思路在于数据驱动、多渠道触达以及优化转化路径,从而实现高效的市场推广和客户转化。数据驱动原理和机制数据驱动的核心在于通过分析用户行为数据,挖掘潜在客户的需求和喜好,从而制定更加精准的
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号