Redis项目实战——黑马点评(优惠卷秒杀部分)

优惠券秒杀

4.1全局唯一ID

思路

每个店铺都可以发布优惠券:

当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,而订单表如果使用数据库自增ID就存在一些问题:

  • id的规律性太明显
  • 受单表数据量的限制

场景分析:如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,比如商城在一天时间内,卖出了多少单,这明显不合适。

场景分析二:随着商城规模越来越大,mysql的单表的容量不宜超过500W,数据量过大之后,要进行拆库拆表,但拆分表了之后,他们从逻辑上讲他们是同一张表,所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性。

全局ID生成器,是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足下列特性:

Redis项目实战——黑马点评(优惠卷秒杀部分)_第1张图片

为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:

Redis项目实战——黑马点评(优惠卷秒杀部分)_第2张图片

全局唯一ID生成策略:

  • UUID
  • Redis自增
  • snowflake算法
  • 数据库自增

Redis自增ID策略:

  • 每天一个key,方便统计订单量
  • ID构造是 时间戳 + 计数器

Redis实现全局唯一Id

@Component
public class RedisIdWorker {
    /**
     * 开始时间戳
     */
    private static final long BEGIN_TIMESTAMP = 1640995200L;
    /**
     * 序列号的位数
     */
    private static final int COUNT_BITS = 32;

    private StringRedisTemplate stringRedisTemplate;

    public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {
        this.stringRedisTemplate = stringRedisTemplate;
    }

    public long nextId(String keyPrefix) {
        // 1.生成时间戳
        LocalDateTime now = LocalDateTime.now();
        long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
        long timestamp = nowSecond - BEGIN_TIMESTAMP;

        // 2.生成序列号
        // 2.1.获取当前日期,精确到天
        String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
        // 2.2.自增长
        long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);

        // 3.拼接并返回
        return timestamp << COUNT_BITS | count;
    }
}

测试类

知识小贴士:关于countdownlatch

countdownlatch名为信号枪:主要的作用是同步协调在多线程的等待于唤醒问题

我们如果没有CountDownLatch ,那么由于程序是异步的,当异步程序没有执行完时,主线程就已经执行完了,然后我们期望的是分线程全部走完之后,主线程再走,所以我们此时需要使用到CountDownLatch

CountDownLatch 中有两个最重要的方法

1、countDown

2、await

await 方法 是阻塞方法,我们担心分线程没有执行完时,main线程就先执行,所以使用await可以让main线程阻塞,那么什么时候main线程不再阻塞呢?当CountDownLatch 内部维护的 变量变为0时,就不再阻塞,直接放行,那么什么时候CountDownLatch 维护的变量变为0 呢,我们只需要调用一次countDown ,内部变量就减少1,我们让分线程和变量绑定, 执行完一个分线程就减少一个变量,当分线程全部走完,CountDownLatch 维护的变量就是0,此时await就不再阻塞,统计出来的时间也就是所有分线程执行完后的时间。

@Test
void testIdWorker() throws InterruptedException {
    CountDownLatch latch = new CountDownLatch(300);

    Runnable task = () -> {
        for (int i = 0; i < 100; i++) {
            long id = redisIdWorker.nextId("order");
            System.out.println("id = " + id);
        }
        latch.countDown();
    };
    long begin = System.currentTimeMillis();
    for (int i = 0; i < 300; i++) {
        es.submit(task);
    }
    latch.await();
    long end = System.currentTimeMillis();
    System.out.println("time = " + (end - begin));
}

添加优惠卷

Redis项目实战——黑马点评(优惠卷秒杀部分)_第3张图片

tb_voucher:优惠券的基本信息,优惠金额、使用规则等tb_seckill_voucher:优惠券的库存、开始抢购时间,结束抢购时间。特价优惠券才需要填写这些信息

平价卷由于优惠力度并不是很大,所以是可以任意领取

而代金券由于优惠力度大,所以像第二种卷,就得限制数量,从表结构上也能看出,特价卷除了具有优惠卷的基本信息以外,还具有库存,抢购时间,结束时间等等字段

新增普通卷代码: VoucherController

@PostMapping
public Result addVoucher(@RequestBody Voucher voucher) {
    voucherService.save(voucher);
    return Result.ok(voucher.getId());
}

新增秒杀卷代码:

VoucherController

@PostMapping("seckill")
public Result addSeckillVoucher(@RequestBody Voucher voucher) {
    voucherService.addSeckillVoucher(voucher);
    return Result.ok(voucher.getId());
}

VoucherServiceImpl

@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
    // 保存优惠券
    save(voucher);
    // 保存秒杀信息
    SeckillVoucher seckillVoucher = new SeckillVoucher();
    seckillVoucher.setVoucherId(voucher.getId());
    seckillVoucher.setStock(voucher.getStock());
    seckillVoucher.setBeginTime(voucher.getBeginTime());
    seckillVoucher.setEndTime(voucher.getEndTime());
    seckillVoucherService.save(seckillVoucher);
    // 保存秒杀库存到Redis中
    stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}

4.2实现优惠券秒杀下单

秒杀下单应该思考的内容:

下单时需要判断两点:

  • 秒杀是否开始或结束,如果尚未开始或已经结束则无法下单
  • 库存是否充足,不足则无法下单

下单核心逻辑分析:

当用户开始进行下单,我们应当去查询优惠卷信息,查询到优惠卷信息,判断是否满足秒杀条件

比如时间是否充足,如果时间充足,则进一步判断库存是否足够,如果两者都满足,则扣减库存,创建订单,然后返回订单id,如果有一个条件不满足则直接结束。

Redis项目实战——黑马点评(优惠卷秒杀部分)_第4张图片

VoucherOrderServiceImpl

@Override
public Result seckillVoucher(Long voucherId) {
    // 1.查询优惠券
    SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
    // 2.判断秒杀是否开始
    if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
        // 尚未开始
        return Result.fail("秒杀尚未开始!");
    }
    // 3.判断秒杀是否已经结束
    if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
        // 尚未开始
        return Result.fail("秒杀已经结束!");
    }
    // 4.判断库存是否充足
    if (voucher.getStock() < 1) {
        // 库存不足
        return Result.fail("库存不足!");
    }
    //5,扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update();
    if (!success) {
        //扣减库存
        return Result.fail("库存不足!");
    }
    //6.创建订单
    VoucherOrder voucherOrder = new VoucherOrder();
    // 6.1.订单id
    long orderId = redisIdWorker.nextId("order");
    voucherOrder.setId(orderId);
    // 6.2.用户id
    Long userId = UserHolder.getUser().getId();
    voucherOrder.setUserId(userId);
    // 6.3.代金券id
    voucherOrder.setVoucherId(voucherId);
    save(voucherOrder);

    return Result.ok(orderId);

}

4.3超卖问题

有关超卖问题分析

在我们原有代码中是这么写的

if (voucher.getStock() <1) {
        // 库存不足
        returnResult.fail("库存不足!");
    }
    //5,扣减库存
    booleansuccess=seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update();
    if (!success) {
        //扣减库存
        returnResult.fail("库存不足!");
    }

假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,此时就会出现库存的超卖问题。

超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案就是加锁:而对于加锁,我们通常有两种解决方案:见下图:

你可能感兴趣的:(redis,redis,bootstrap,数据库)