- IK分词
初心myp
实现简单的分词功能,智能化分词添加依赖配置:4.10.4org.apache.lucenelucene-core${lucene.version}org.apache.lucenelucene-analyzers-common${lucene.version}org.apache.lucenelucene-queryparser${lucene.version}org.apache.lucenel
- 企业级区块链平台Hyperchain核心原理剖析
boyedu
区块链区块链企业级区块链平台Hyperchain
Hyperchain作为国产自主可控的企业级联盟区块链平台,其核心原理围绕高性能共识、隐私保护、智能合约引擎及可扩展架构展开,通过多模块协同实现企业级区块链网络的高效部署与安全运行。以下从核心架构、关键技术、性能优化、安全机制、应用场景五个维度展开剖析:一、核心架构:分层解耦与模块化设计Hyperchain采用分层架构,将区块链功能解耦为独立模块,支持灵活组合与扩展:P2P网络层由验证节点(VP)
- 免费排版助手:智能修正段落 + 删除干扰符,杂乱文本一键变规范
各位文字工作者们!你们有没有被排版折磨到崩溃的时候?我跟你们说,我之前排版一篇文章,那简直就像在走迷宫,头晕眼花的!不过后来我发现了一款软件——排版助手!软件下载地址安装包这玩意儿是个文章智能排版工具,专门给新闻编辑、文摘网站这些文字工作者用的。它功能老多了,能修正段落,把那些乱七八糟的段落变得规规矩矩;还能删除干扰符,就像给文章做了个大扫除,把没用的东西都清理掉;简繁转换也不在话下,不管是简体还
- 为了在未来的人工智能世界中取得成功,学生们必须学习人类写作的优点
睿邸管家
澳大利亚各地的学生在新学年开始使用铅笔、钢笔和键盘学习写字。在工作场所,机器也在学习写作,如此有效,几年之内,它们可能会写得比人类更好。有时它们已经做到了,就像Grammarly这样的应用程序所展示的那样。当然,人类现在的日常写作可能很快就会由具有人工智能(AI)的机器来完成。手机和电子邮件软件常用的预测文本是无数人每天都在使用的一种人工智能写作形式。据AI行业研究机构称,到2022年,人工智能及
- 【Coze搞钱实战】3. 避坑指南:对话流设计中的6个致命错误(真实案例)
AI_DL_CODE
Coze平台对话流设计客服Bot避坑用户流失封号风险智能客服配置故障修复指南
摘要:对话流设计是智能客服Bot能否落地的核心环节,直接影响用户体验与业务安全。本文基于50+企业Bot部署故障分析,聚焦导致用户流失、投诉甚至封号的6大致命错误:无限循环追问、人工移交超时、敏感词过滤缺失、知识库冲突、未处理否定意图、跨平台适配失败。通过真实案例拆解每个错误的表现形式、技术根因及工业级解决方案,提供可直接复用的Coze配置代码、工作流模板和检测工具。文中包含对话流健康度检测工具使
- 如果生命可以重来
房三丽
如果世界上真的有后悔药,我相信,绝大部分人都会想拥有;可惜,世上哪会有这么好的事啊。但如果真有,我相信,很多人又会苦恼它的存在;没有原因,因为人本身就是个矛盾体。一天,我在上班的过程中,突然电话响起,是二姐的电话,接通电话之后,二姐就问我,在干嘛,我说还能干嘛,上班啊;接着她说,她换了一份工作,就在家附近,工资也还凑合,我说那挺好的,她说,这些倒挺好的,就是上班时间太长了,每天从早上8点上到晚上8
- Qwen3 大模型实战:使用 vLLM 部署与函数调用(Function Call)全攻略
曦紫沐
大模型大模型部署Qwen3vLLM函数调用
文章摘要本文将带你从零开始,深入掌握如何使用Qwen3-8B大语言模型,结合vLLM进行高性能部署,并通过函数调用(FunctionCall)实现模型与外部工具的智能联动。我们将详细讲解部署命令、调用方式、代码示例及实际应用场景,帮助你快速构建基于Qwen3的智能应用。一、Qwen3简介与部署环境准备Qwen3是通义千问系列的最新一代大语言模型,具备强大的自然语言理解和生成能力,尤其在函数调用、工
- 人工智能应用研究快讯 2021-11-30
峰谷皆平
[HTML]ArtificialIntelligenceforSkinCancerDetection:ScopingReviewATakiddin,JSchneider,YYang,AAbd-Alrazaq...JournalofMedicalInternet...,2021ABSTACT:Background:Skincanceristhemostcommoncancertypeaffectin
- 学C++的五大惊人好处
为什么要学c++学c++有什么用学习c++的好处有1.中考可以加分2.高考可能直接录取3.就业广且工资高4.在未来30--50年c++一定是一个很受欢迎的职业5.c++成功的例子deepsick等AI智能C++语言兼备编程效率和编译运行效率的语言C++语言是C语言功能增强版,在c语言的基础上添加了面向对象编程和泛型编程的支持既继承了C语言高效,简洁,快速和可移植的传统,又具备类似Java、Go等其
- 从振动信号到精准预警:AI 如何重塑工业设备健康管理?
缘华工业智维
人工智能计算机视觉边缘计算信息与通信
在智能制造浪潮席卷全球的当下,工业生产正经历着从传统模式向智能化、数字化转型的深刻变革。在这场变革中,AI驱动的振动分析技术犹如一颗璀璨新星,成为工业设备可靠运行的“健康卫士”。它通过在设备关键部位部署振动传感器,如同医生为患者听诊般实时采集设备运行时的振动信号,再借助强大的人工智能算法对这些“工业脉搏”进行深度解析,从而实现对工业设备从故障预警到寿命预测的全周期精准守护。一、AI振动分析:设备状
- 基于DeepSeek的下一代大型游戏开发革命:架构、核心技术与项目管理实践
Liudef06小白
特殊专栏人工智能AIGC架构人工智能deepseek
基于DeepSeek的下一代大型游戏开发革命:架构、核心技术与项目管理实践DeepSeek大模型正重塑游戏开发范式,本文将深入解析如何利用这一革命性技术构建下一代大型游戏,涵盖从架构设计到项目管理的全流程实践。目录DeepSeek游戏引擎核心架构1.1神经符号系统融合架构1.2动态世界生成引擎智能NPC与剧情系统2.1角色人格建模技术2.2动态叙事生成算法大型项目管理体系3.1敏捷-AI混合开发流
- AI 生成虚拟宠物:24 小时陪你聊天解闷
大力出奇迹985
人工智能宠物
本文围绕AI生成虚拟宠物展开,介绍这类依托人工智能技术诞生的虚拟伙伴,能实现24小时不间断陪伴聊天,为人们解闷。文中详细阐述其技术基础,包括自然语言处理、机器学习等;分析多样功能,如个性化互动、情绪回应等;探讨在独居人群、压力大者等不同群体中的应用场景,最后总结其为人们生活带来的积极影响及未来发展潜力,展现AI虚拟宠物在陪伴领域的独特价值。一、AI生成虚拟宠物的诞生背景与技术基石在快节奏的现代社会
- GPT-4 在 AIGC 中的微调技巧:让模型更懂你的需求
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络AIGCai
GPT-4在AIGC中的微调技巧:让模型更懂你的需求关键词:GPT-4、AIGC、模型微调、监督学习、指令优化、过拟合预防、个性化生成摘要:AIGC(人工智能生成内容)正在重塑内容创作行业,但通用的GPT-4模型可能无法精准匹配你的垂直需求——比如写电商爆款文案时总“跑题”,或生成技术文档时专业术语不够。本文将用“教小朋友学画画”的通俗类比,从微调的底层逻辑讲到实战技巧,带你掌握让GPT-4“更懂
- 神经形态计算如何突破冯·诺依曼架构限制?
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构架构ai
神经形态计算如何突破冯·诺依曼架构限制?关键词:神经形态计算、冯·诺依曼架构、内存墙、存算一体、脉冲神经网络、类脑芯片、低功耗计算摘要:本文将从“冯·诺依曼架构的前世今生”讲起,用“图书馆管理员搬书”的生活案例类比其核心矛盾,再通过“人脑神经元工作模式”的比喻引入神经形态计算的核心原理。我们将一步步拆解冯·诺依曼架构的三大限制(内存墙、高功耗、非结构化数据处理弱),并对应解析神经形态计算的三大突破
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- 数据分析领域中AI人工智能的发展前景展望
AI大模型应用工坊
AI大模型开发实战数据分析人工智能数据挖掘ai
数据分析领域中AI人工智能的发展前景展望关键词:数据分析、人工智能、机器学习、深度学习、数据挖掘、预测分析、自动化摘要:本文深入探讨了人工智能在数据分析领域的发展现状和未来趋势。我们将从核心技术原理出发,分析AI如何改变传统数据分析范式,详细讲解机器学习算法在数据分析中的应用,并通过实际案例展示AI驱动的数据分析解决方案。文章还将探讨行业应用场景、工具生态以及未来发展面临的挑战和机遇,为数据分析师
- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- 【三桥君】AI技术发展下,单智能体局限性凸显,如何通过MCP和A2A协议实现智能体团队协作转变?
你好,我是✨三桥君✨本文介绍>>一、引言在AI技术突飞猛进的今天,单智能体的局限性正日益暴露,而智能体(AIAgents)协作已然成为不可逆转的趋势。你是否曾思考过,如何通过MCP和A2A协议实现智能体从单兵作战到团队协作的革命性转变?本文三桥君将深入探讨MCP和A2A协议的核心功能与优势,帮助你全面理解智能体协作的无限可能。二、A2A与MCP协议作用MCP(ModelControlProtoco
- 【三桥君】MCP中台,究竟如何实现多模型、多渠道、多环境的统一管控?如何以MCP为核心设计AI应用架构?
三桥君
《三桥君MCP落地方法论》《三桥君AI大模型落地方法论》#《三桥君AI产品方法论》人工智能AI产品经理MCPAPI三桥君系统架构llama
你好,我是✨三桥君✨本文介绍>>一、引言随着人工智能技术的快速发展,越来越多的企业开始引入大语言模型(LLM)以提升用户体验和运营效率。然而,如何高效、稳定地将这些AI能力落地到生产环境呢?传统的系统架构往往难以应对AI应用的高并发、低延迟和灵活扩展需求,因此,从整体架构角度设计AI应用架构显得尤为重要。本文三桥君将深入探讨以MCP为核心的AI应用架构,并分析多种部署方式的优劣势,为企业在AI落地
- 深入理解卷积神经网络(CNN)与循环神经网络(RNN)
CodeJourney.
cnnrnn人工智能
在当今的人工智能领域,神经网络无疑是最为璀璨的明珠之一。而卷积神经网络(ConvolutionalNeuralNetworks,CNN)和循环神经网络(RecurrentNeuralNetworks,RNN)作为神经网络家族中的重要成员,各自有着独特的架构和强大的功能,广泛应用于众多领域。本文将深入探讨这两种神经网络的原理、特点以及应用场景,为对深度学习感兴趣的读者提供全面的知识讲解。一、卷积神经
- 今年校招竞争真激烈
12_05
程序员满大街,都要找不到工作了。即使人工智能满大街,我也后悔当初没学机器学习,后悔当初没学Java。C++真难找工作。难道毕了业就失业吗?好担心!
- C语言结构体详解
初学者,亦行者
C语言学习算法数据结构c语言
目录C语言结构体1、声明结构体类型2、定义结构体变量3、成员的赋值与引用4、结构体数组5、结构体指针6、总结C语言结构体1、声明结构体类型前面学习了数组是一组相同类型数据的集合。但在实际应用中,我们往往会遇到不同类型的数据。而结构体就是用来存放不同数据的。#includeintmain(){structStu{intnum;//学号为整型charname[20];//姓名为字符串charsex;/
- Python 程序设计讲义(25):循环结构——嵌套循环
Python程序设计讲义(25):循环结构——嵌套循环目录Python程序设计讲义(25):循环结构——嵌套循环一、嵌套循环的执行流程二、嵌套循环对应的几种情况1、内循环和外循环互不影响2、外循环迭代影响内循环的条件3、外循环迭代影响内循环的循环体嵌套循环是指在一个循环体中嵌套另一个循环。while循环中可以嵌入另一个while循环或for循环。反之,也可以在for循环中嵌入另一个for循环或wh
- 基于STM32的智能鱼缸设计
DS小龙哥
智能家居与物联网项目实战stm32单片机arm
1.前言为了缓解学习、生活、工作带来的压力,提升生活品质,许多人喜欢在家中、办公室等场所养鱼。为节省鱼友时间、劳力、增加养鱼乐趣;为此,本文基于STM32单片机设计了一款智能鱼缸。该鱼缸可以实现水温检测、水质检测、自动或手动换水、氛围灯灯光变换和自动或手动喂食等功能为一体的控制系统,可通过控制键进行一键控制。从功能上分析,需要用到的硬件如下:(1)STM32系统板(2)水温温度检测传感器:测量水温
- 基于随机森林的白酒风味智能分类系统:从数据到洞察的完整实践
笙囧同学
python
作者:笙囧同学|中科院计算机大模型方向硕士|全栈开发爱好者座右铭:偷懒是人生进步的阶梯联系方式:
[email protected]各大平台账号/公众号:笙囧同学前言大家好,我是笙囧同学!今天给大家分享一个超级有趣且技术含量爆表的项目——白酒风味智能分类系统。作为一个既爱技术又爱美酒的程序员,我花了大量时间研究如何用机器学习的方法来"品酒",让AI帮我们识别白酒的风味特征。这个项目融合了机器学习、数
- 如何运用深度学习打造高效AI人工智能系统
AI智能探索者
AIAgent智能体开发实战人工智能深度学习ai
如何运用深度学习打造高效AI人工智能系统关键词:深度学习、AI系统、神经网络、模型优化、实战开发摘要:本文将从深度学习的核心概念出发,结合生活实例和代码实战,系统讲解如何构建高效AI系统。我们会拆解数据准备、模型设计、训练优化、部署落地的全流程,揭秘“数据-模型-训练-推理”的协同机制,并通过具体案例演示从0到1开发AI系统的关键技巧,帮助开发者掌握打造高效AI系统的底层逻辑。背景介绍目的和范围在
- 001 Configuration结构体构造
盖世灬英雄z
DramSysc++人工智能
目录DramSys代码分析1Configuration结构体构造1.1`from_path`函数详解1.2构造过程总结这种设计的好处2Simulator例化过程2.1instantiateInitiatorDramSys代码分析1Configuration结构体构造好的,我们来详细解释一下DRAMSysConfiguration.cpp文件中from_path函数的配置构造过程。这个文件是DRAM
- 非欧空间计算加速:图神经网络与微分几何计算的GPU优化(流形数据的内存布局优化策略)
九章云极AladdinEdu
空间计算神经网络人工智能gpu算力算法java开发语言
一、非欧空间计算的革命性意义与核心挑战在三维形状分析、社交网络建模、分子动力学模拟等领域,非欧几里得空间数据(流形数据)的处理正推动人工智能技术向更复杂的几何结构迈进。传统欧式空间优化方法在处理流形数据时面临根本性局限:黎曼度量导致距离计算失效、局部坐标系动态变化引发内存访问模式混乱、曲率变化影响并行计算效率。本文提出基于分块流形存储(BlockedManifoldStorage,BMS)与层次化
- 【架构实战】AI系统架构设计全攻略:从蓝图到爆款,一步步打造成功!
大模型入门教程
架构人工智能系统架构产品经理LLM大模型学习大模型
某AI公司信心满满推出了一款智能客服,想用它解放客服人力,提升用户体验。可上线没几天,系统就频频崩溃,用户投诉像雪片一样飞来,最后公司不得不紧急下线产品,声誉一落千丈。这事儿听起来是不是有点惨?但它告诉我们一个真相:AI架构设计不是锦上添花,而是决定系统生死存亡的关键。今天我要和大家聊一个既高大上又接地气的话题——AI系统架构设计。别被“架构”这个词吓到,它其实就像盖房子的地基,决定了你的AI系统
- DeepBI助力亚马逊广告投放:精准获取竞品ASIN,抢占更多流量
新置元
创业创新amazon亚马逊广告
想在亚马逊广告投放中抢占更多流量?关键就在于精准添加竞品ASIN!通过DeepBI,你可以轻松找到与你产品高度相关的竞品,自动添加到广告中,提升曝光率。系统不仅智能分析竞品,还根据最新的数据调整出价策略,让你以最低成本获取最大回报。想要在竞争激烈的市场中脱颖而出,提升广告效果,DeepBI帮你精准定位、优化投放,让每一笔广告投入都物超所值!一、精准获取与添加竞品ASIN的重要性在亚马逊广告投放中,
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号