什么是 RDD
RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。
➢ 弹性
存储的弹性:内存与磁盘的自动切换;
容错的弹性:数据丢失可以自动恢复;
计算的弹性:计算出错重试机制;
分片的弹性:可根据需要重新分片。
➢ 分布式:数据存储在大数据集群不同节点上
➢ 数据集:RDD 封装了计算逻辑,并不保存数据
➢ 数据抽象:RDD 是一个抽象类,需要子类具体实现
➢ 不可变:RDD 封装了计算逻辑,是不可以改变的,想要改变,只能产生新的 RDD,在新的 RDD 里面封装计算逻辑
➢ 可分区、并行计算
RDD 序列化
1) 闭包检查
从计算的角度, 算子以外的代码都是在 Driver 端执行, 算子里面的代码都是在 Executor端执行。那么在 scala 的函数式编程中,就会导致算子内经常会用到算子外的数据,这样就形成了闭包的效果,如果使用的算子外的数据无法序列化,就意味着无法传值给 Executor端执行,就会发生错误,所以需要在执行任务计算前,检测闭包内的对象是否可以进行序列化,这个操作我们称之为闭包检测。Scala2.12 版本后闭包编译方式发生了改变
2) 序列化方法和属性
从计算的角度, 算子以外的代码都是在 Driver 端执行, 算子里面的代码都是在 Executor端执行
3) Kryo 序列化框架Java 的序列化能够序列化任何的类。但是比较重(字节多),序列化后,对象的提交也比较大。Spark 出于性能的考虑,Spark2.0 开始支持另外一种 Kryo 序列化机制。Kryo 速度是Serializable 的 10 倍。当 RDD 在 Shuffle 数据的时候,简单数据类型、数组和字符串类型已经在 Spark 内部使用 Kryo 来序列化。
注意:即使使用 Kryo 序列化,也要继承 Serializable 接口。
RDD 依赖关系
1) RDD 血缘关系
RDD 只支持粗粒度转换,即在大量记录上执行的单个操作。将创建 RDD 的一系列 Lineage(血统)记录下来,以便恢复丢失的分区。RDD 的 Lineage 会记录 RDD 的元数据信息和转换行为,当该 RDD 的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
2) RDD 依赖关系
这里所谓的依赖关系,其实就是两个相邻 RDD 之间的关系。包括打印依赖、shuffle依赖等。
3) RDD 窄依赖
窄依赖表示每一个父(上游)RDD 的 Partition 最多被子(下游)RDD 的一个 Partition 使用,窄依赖我们形象的比喻为独生子女。
4) RDD 宽依赖
宽依赖表示同一个父(上游)RDD 的 Partition 被多个子(下游)RDD 的 Partition 依赖,会引起 Shuffle,总结:宽依赖我们形象的比喻为多生。
5) RDD 阶段划分
DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向,不会闭环。例如,DAG 记录了 RDD 的转换过程和任务的阶段。
RDD 分区器
Spark 目前支持 Hash 分区和 Range 分区,和用户自定义分区。Hash 分区为当前的默认分区。分区器直接决定了 RDD 中分区的个数、RDD 中每条数据经过 Shuffle 后进入哪个分区,进而决定了 Reduce 的个数。
➢ 只有 Key-Value 类型的 RDD 才有分区器,非 Key-Value 类型的 RDD 分区的值是 None
➢ 每个 RDD 的分区 ID 范围:0 ~ (numPartitions - 1),决定这个值是属于那个分区的。
1) Hash 分区:对于给定的 key,计算其 hashCode,并除以分区个数取余。
2) Range 分区:将一定范围内的数据映射到一个分区中,尽量保证每个分区数据均匀,而且分区间有序
核心组件
由上图可以看出,对于 Spark 框架有两个核心组件:
Driver
Spark 驱动器节点,用于执行 Spark 任务中的 main 方法,负责实际代码的执行工作。
Driver 在 Spark 作业执行时主要负责:
➢ 将用户程序转化为作业(job)
➢ 在 Executor 之间调度任务(task)
➢ 跟踪 Executor 的执行情况
➢ 通过 UI 展示查询运行情况
实际上,我们无法准确地描述 Driver 的定义,因为在整个的编程过程中没有看到任何有关Driver 的字眼。所以简单理解,所谓的 Driver 就是驱使整个应用运行起来的程序,也称之为Driver 类。
Executor
Spark Executor 是集群中工作节点(Worker)中的一个 JVM 进程,负责在 Spark 作业中运行具体任务(Task),任务彼此之间相互独立。Spark 应用启动时,Executor 节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有 Executor 节点发生了故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他 Executor 节点上继续运行。
Executor 有两个核心功能:
➢ 负责运行组成 Spark 应用的任务,并将结果返回给驱动器进程
➢ 它们通过自身的块管理器(Block Manager)为用户程序中要求缓存的 RDD 提供内存式存储。RDD 是直接缓存在 Executor 进程内的,因此任务可以在运行时充分利用缓存数据加速运算。
Master & Worker
Spark 集群的独立部署环境中,不需要依赖其他的资源调度框架,自身就实现了资源调度的功能,所以环境中还有其他两个核心组件:Master 和 Worker,这里的 Master 是一个进程,主要负责资源的调度和分配,并进行集群的监控等职责,类似于 Yarn 环境中的 RM, 而Worker 呢,也是进程,一个 Worker 运行在集群中的一台服务器上,由 Master 分配资源对数据进行并行的处理和计算,类似于 Yarn 环境中 NM。
ApplicationMaster
Hadoop 用户向 YARN 集群提交应用程序时,提交程序中应该包含 ApplicationMaster,用于向资源调度器申请执行任务的资源容器 Container,运行用户自己的程序任务 job,监控整个任务的执行,跟踪整个任务的状态,处理任务失败等异常情况。
说的简单点就是,ResourceManager(资源)和 Driver(计算)之间的解耦合靠的就是ApplicationMaster。
提交流程
所谓的提交流程,其实就是开发人员根据需求写的应用程序通过 Spark 客户端提交给 Spark 运行环境执行计算的流程。在不同的部署环境中,这个提交过程基本相同,但是又有细微的区别,这里不进行详细的比较,但是因为国内工作中,将 Spark 引用部署到Yarn 环境中会更多一些,所以这里提到的提交流程是基于 Yarn 环境的。
Spark 应用程序提交到 Yarn 环境中执行的时候,一般会有两种部署执行的方式:Client和 Cluster。两种模式主要区别在于:Driver 程序的运行节点位置。
Yarn Client 模式
Client 模式将用于监控和调度的 Driver 模块在客户端执行,而不是在 Yarn 中,所以一般用于测试。
➢ Driver 在任务提交的本地机器上运行
➢ Driver 启动后会和 ResourceManager 通讯申请启动 ApplicationMaster
➢ ResourceManager 分配 container,在合适的 NodeManager 上启动 ApplicationMaster,负责向 ResourceManager 申请 Executor 内存
➢ ResourceManager 接到 ApplicationMaster 的资源申请后会分配 container,然后ApplicationMaster 在资源分配指定的 NodeManager 上启动 Executor 进程
➢ Executor 进程启动后会向 Driver 反向注册,Executor 全部注册完成后 Driver 开始执行main 函数
➢ 之后执行到 Action 算子时,触发一个 Job,并根据宽依赖开始划分 stage,每个 stage 生成对应的 TaskSet,之后将 task 分发到各个 Executor 上执行。
Yarn Cluster 模式
Cluster 模式将用于监控和调度的 Driver 模块启动在 Yarn 集群资源中执行。一般应用于实际生产环境。
➢ 在 YARN Cluster 模式下,任务提交后会和 ResourceManager 通讯申请启动ApplicationMaster。
➢ 随后 ResourceManager 分配 container,在合适的 NodeManager 上启动 ApplicationMaster,此时的 ApplicationMaster 就是 Driver。
➢ Driver 启动后向 ResourceManager 申请 Executor 内存,ResourceManager 接到ApplicationMaster 的资源申请后会分配 container,然后在合适的 NodeManager 上启动Executor 进程。
➢ Executor 进程启动后会向 Driver 反向注册,Executor 全部注册完成后 Driver 开始执行main 函数。
➢ 之后执行到 Action 算子时,触发一个 Job,并根据宽依赖开始划分 stage,每个 stage 生成对应的 TaskSet,之后将 task 分发到各个 Executor 上执行。
第五节 Spark-Core编程(一)
环境准备
1. Jdk1.8版本
2. Scala2.12版本
3. Idea集成开发环境中需要安装scala插件
环境配置
添加 Scala 插件
Spark 由 Scala 语言开发的,所以接下来的开发所使用的语言也为 Scala,当前使用的 Spark 版本为 3.0.0,默认采用的 Scala 编译版本为 2.12,所以后续开发时,我们依然采用2.12的scala版本。开发前请保证 IDEA 开发工具中含有 Scala 开发插件
File—Settings—plugins
2.在pom.xml中添加依赖
编写wordCount的spark程序
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object WordCount {
def main(args: Array[String]): Unit = {
// 创建 Spark 运行配置对象
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount")
// 创建 Spark 上下文环境对象(连接对象)
val sc : SparkContext = new SparkContext(sparkConf)
// 读取文件数据
val fileRDD: RDD[String] = sc.
textFile("Spark-core/input/word.txt")
// 将文件中的数据进行分词
val wordRDD: RDD[String] = fileRDD.flatMap( _.split(" ") )
// 转换数据结构 word => (word, 1)
val word2OneRDD: RDD[(String, Int)] = wordRDD.map((_,1))
// 将转换结构后的数据按照相同的单词进行分组聚合
val word2CountRDD: RDD[(String, Int)] = word2OneRDD.reduceByKey(_+_)
// 将数据聚合结果采集到内存中
val word2Count: Array[(String, Int)] = word2CountRDD.collect()
// 打印结果
word2Count.foreach(println)
//关闭 Spark 连接
sc.stop()
}
}
在Spark-core中创建名为input的文件夹,在此文件夹中创建word.txt文件,并在文件中添加需要进行统计的语句
运行编写好的WordCount程序