- 用代码生成艺术字:设计个性化海报的秘密
本文围绕“用代码生成艺术字:设计个性化海报的秘密”展开,先概述代码生成艺术字在海报设计中的独特价值,接着介绍常用的代码工具(如HTML、CSS、JavaScript等),详细阐述从构思到实现的完整流程,包括字体样式设计、动态效果添加等,还分享了提升艺术字质感的技巧及实际案例。最后总结代码生成艺术字的优势,为设计师提供打造个性化海报的实用指南,助力提升海报设计的独特性与吸引力,符合搜索引擎SEO标准
- 搜索引擎技术选型
dusty_giser
近期,业主对POI检索提出了一些想法,针对之前简单的WordSegment分词和模糊匹配搜索需要进行一些更为符合业主需求的调整。于是这几天对搜索引擎进行了一些技术选型;一、ApacheLucene Lucene是一个开源的高性能、可扩展的全文检索引擎工具包,但不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎。所以它是一套信息检索工具包,可以说是当今最先进
- Vue CSR 到 Nuxt 3 SSR 迁移:技术实现与问题解决实录
二倍速播放
前端vue.js
1.迁移动机与技术选型1.1CSR架构的局限性基于Vue3和Vite构建的客户端渲染(CSR)单页应用(SPA)提供了良好的开发体验和用户交互流畅性。但是其核心局限在于:搜索引擎优化(SEO):初始HTML响应仅包含一个根div元素,实际内容由JavaScript在浏览器端动态生成。虽然主流搜索引擎(如Google)能够执行部分JavaScript,但其抓取效率和稳定性不如直接获取完整HTML。非
- 企业级RAG的数据方案选择 - 向量数据库、图数据库和知识图谱
南七小僧
AI技术产品经理网站开发人工智能数据库知识图谱人工智能
如何为企业RAG选择合适的数据存储方式摘要:本文讨论了矢量数据库、图数据库和知识图谱在解决信息检索挑战方面的重要性,特别是针对企业规模的检索增强生成(RAG)。看看海外人工智能企业Writer是如何利用知识图谱增强企业级RAG。要点概要:矢量数据库高效存储数据,但缺乏上下文和关联信息。图数据库优先考虑数据点之间的关系,受益于关系结构。知识图谱在语义存储方面表现出色,由于其能够编码丰富的上下文信息,
- Langchain学习笔记(十):文档加载与处理详解
注:本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。前言在构建基于大语言模型的应用时,文档处理是一个至关重要的环节。无论是构建RAG(检索增强生成)系统,还是进行知识库问答,我们都需要将各种格式的文档转换为模型可以理解和处理的形式。Langchain提供了强大的文档加载和处理功能,支持多种文件格式,并提
- 基于知识图谱技术增强大模型RAG知识库应用效果
罗伯特之技术屋
知识图谱人工智能
【摘要】本文是AI落地实践的优秀案例,利用RAG技术(Retrieval-AugmentedGeneration,检索增强生成)的知识库实践为背景,介绍了RAG技术的发展及存在的不足,以及知识图谱相关的知识,利用RAG技术去完善和智能化知识图谱。在AI技术大量涌现,但应用不足的情况下,指明了现有应用场景、技术与AI结合的具体做法。1.引言随着人工智能技术的加速演进,AI大模型如雨后春笋般纷纷涌现,
- 构建高效 RAG 流程的七个关键点及其落地实践
charles666666
搜索引擎大数据需求分析交互笔记数据库
人工智能应用浪潮中,检索增强生成(RAG)技术凭借着结合大型语言模型(LLMs)的生成能力和信息检索系统的独特优势,成为了各企业挖掘数据价值、提升业务智能化水平的关键手段之一。然而,构建一个高效且精准的RAG流程并非易事,其中存在着诸多关键点和挑战。作为一名非资深IT技术顾问,我将基于丰富的实战经验,为大家深入剖析构建高效RAG流程的七个关键点及其落地实践。一、文档解析:混合格式的“第一道坎”在企
- 手把手教你搭建AI搜图系统:基于BGE-VL+Milvus的完整实现指南
引言图像搜索有何价值?•帮你找身份证:在海量相册里搜索身份证•电商神器:淘宝"拍立淘"让你拍照变订单•设计师救星:3秒找到可商用的高清素材图老搜索vs新搜索的区别老搜索:像查字典,必须输入正确关键词新搜索:像跟人聊天,图片/语音都能搜,还能理解表情包为什么选BGE-VL+Milvus这个王炸组合?•就像给搜索引擎装了"人脑"(BGE-VL理解图片内涵)•加上"闪电手"Milvus(毫秒级匹配海量图
- 【速通RAG实战:进阶】16、AI生成思维导图全技术解析
无心水
速通RAG实战!解锁AI2.0高薪密码人工智能AI思维导图知识图谱markmap-jsQwen-long模型CSDN技术干货
一、AI生成思维导图的底层技术逻辑(一)知识结构化的核心流程AI生成思维导图的本质是非结构化文本到结构化知识图谱的转化,其技术流程可拆解为五大核心环节:1.语义解析与实体抽取多模态输入处理:支持文本(Markdown/Word/PDF)、语音(会议录音)、手写笔记(图片OCR)等多形式输入,通过TesseractOCR识别图片文字,Whisper处理语音流。实体识别技术栈:#中英文混合实体识别示例
- RAG流程中,要怎么对文本进行拆词?
java干货仓库
八股文汇总大模型面试人工智能自然语言处理llama
在RAG(Retrieval-AugmentedGeneration)流程中,对文本的拆词(Tokenization)是影响检索和生成效果的关键步骤。以下是文本拆词的技术细节及优化方法:1.拆词的核心目标检索阶段:确保查询(Query)和文档(Document)的拆词方式一致,提高检索匹配精度。生成阶段:适配大模型的词表,避免生成时的OOV(Out-of-Vocabulary)问题。2.常见拆词方
- RAGFlow 框架调研报告
it_czz
架构
RAGFlow框架调研报告1.概述RAGFlow是一个开源的检索增强生成(RAG)框架,专注于深度文档理解和高精度检索。它通过先进的文档解析能力和可视化调试功能,为企业提供了一个强大的知识库问答解决方案。1.1核心特性深度文档处理:内置DeepDoc引擎,支持复杂文档解析高精度检索:提供可视化分块和引用追踪多模态支持:支持文本、图片、PDF、Excel等多种格式开源自托管:完全开源,支持私有化部署
- Python网络爬虫技术深度解析:从入门到高级实战
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言easyuiscrapy
1.爬虫技术概述网络爬虫(WebCrawler)是一种自动化程序,通过模拟人类浏览行为从互联网上抓取、解析和存储数据。根据应用场景可分为:通用爬虫:如搜索引擎的蜘蛛程序聚焦爬虫:针对特定领域的数据采集增量式爬虫:只抓取更新内容深层网络爬虫:处理需要交互的动态内容2.2024年Python爬虫技术栈技术分类推荐工具适用场景基础请求库requests,httpx静态页面请求解析库BeautifulSo
- 让 UniApp X “飞”起来:用 SSR 实现服务器端渲染,打造首屏秒开体验
脑袋大大的
uniappx生态专栏前端javascriptvue.jsuniappuniappx
你有没有遇到过这样的尴尬?用户打开你的UniApp项目,首屏白屏几秒钟,用户还没看到内容就走了。尤其是在SEO场景下,搜索引擎爬虫来了,你却只能返回一个“加载中…”的页面,结果自然是——被搜索引擎无情抛弃。但好消息是,从HBuilderX4.18版本起,UniAppX正式支持SSR(ServerSideRendering)服务器端渲染,这意味着你可以让你的UniApp应用“首屏即内容”,秒开页面、
- 生成式引擎优化(GEO)在 Google Gemini 中的实践与探索
GEO优化助手
生成式引擎优化AI搜索优化GEO优化人工智能生成式引擎优化搜索引擎AI搜索营销GEO优化GoogleGemini
2025年,生成式AI(如GoogleGemini、ChatGPT、DeepSeek)已占据全球63%的互联网用户信息获取入口。用户行为从"浏览多个网页"转向"直接获取AI生成的精准答案",这一转变使传统SEO(搜索引擎优化)面临失效风险——即使内容优质,若未被AI模型识别为"可信信源",仍可能被淹没在信息洪流中。在此背景下,生成式引擎优化(GEO,GenerativeEngineOptimiza
- 阿里云SSL代理商:阿里云SSL证书安装后还需要配置吗?
VX jusouyun07
阿里云优惠券阿里云服务器阿里云代理商阿里云ssl云计算
目录一、为什么SSL证书安装后还要配置?二、强制跳转到HTTPS,杜绝HTTP访问三、修复“混合内容”问题,保证页面完全加密四、配置HSTS,提高访问安全性五、301重定向与搜索引擎收录调整六、CDN和WAF环境下的HTTPS配置要点七、站点地图和搜索引擎推送的同步更新八、检查证书有效性及自动续签九、配置HTTPS页面的缓存优化十、总结:SSL证书配置是一项系统工程在当前互联网环境中,网站安全越来
- Java中的模型API、RAG与向量数据库:构建智能应用的新范式
张道宁
人工智能
引言在当今人工智能迅猛发展的时代,Java开发者如何利用最新的AI技术构建智能应用?本文将深入探讨模型API、检索增强生成(RAG)和向量数据库这三种关键技术,以及它们如何协同工作来提升Java应用的智能化水平。一、模型API:Java中的AI能力接入1.1什么是模型API模型API是大型语言模型(LLM)提供的编程接口,允许开发者通过HTTP请求与AI模型交互。在Java生态中,我们可以通过多种
- Java AI面试实战:Spring AI与RAG技术落地
GEM的左耳返
Java场景面试宝典Java面试SpringAIRAG向量数据库AI应用Prompt工程
JavaAI面试实战:SpringAI与RAG技术落地面试现场:AI技术终面室面试官:谢飞机同学,今天我们聚焦JavaAI应用开发,重点考察SpringAI和RAG技术栈。谢飞机:(兴奋地)面试官好!我可是AI达人!ChatGPT、Midjourney我天天用,SpringAI这新框架我也研究过!第一轮:SpringAI基础面试官:请详细描述SpringAI的核心组件及PromptTemplate
- RAG 技术落地:从文档处理到模型输出,细节决定大模型应用效果
RAG技术落地:从文档处理到模型输出,细节决定大模型应用效果基于经典的RAG(检索增强生成)流程,我们能快速搭建大模型相关应用,但实际落地中,细节把控直接决定应用效果能否达到上线标准。从文档读取到最终回复用户,每个环节都暗藏技术挑战,唯有逐一攻克,才能让RAG应用真正发挥价值。文档处理:RAG的基础工程难题RAG流程的第一步是文档处理,这看似简单,实则暗藏诸多挑战。实际场景中需要处理的文档类型繁杂
- selenium 反爬虫识别特征处理
因为业务中发现网站对selenium特征识别为爬虫了,因此在搜索引擎中搜索进行处理方式一#实例化一个浏览器对象options=webdriver.ChromeOptions()options.add_experimental_option('excludeSwitches',['enable-automation'])ifsys.platform=="win32":browser=webdrive
- 打造专属知识库:手把手教你构建RAG系统
RAG通常指的是"Retrieval-AugmentedGeneration",即“检索增强的生成”。这是一种结合了检索(Retrieval)和生成(Generation)的机器学习模型,通常用于自然语言处理任务,如文本生成、问答系统等。我们通过一下几个步骤来完成一个基于京东云官网文档的RAG系统数据收集建立知识库向量检索提示词与模型数据收集数据的收集再整个RAG实施过程中无疑是最耗人工的,涉及到
- 神经架构搜索革命:从动态搜索到高性能LLM的蜕变之路
本文将揭示如何通过神经架构搜索技术(NAS)自动发现最优网络结构,并将搜索结果转化为新一代高性能大型语言模型的核心技术。我们的实验证明,该方法在同等计算资源下可实现80%的性能飞跃!第一部分:神经架构搜索引擎的实现奥秘1.动态操作熔炉架构classMaxStateSuper(nn.Module):def__init__(self,dim_size,heads):#定义5种候选操作self.ops=
- 狂神说Linux笔记
是你牛天成
项目部署linux
B站视频狂神说LinuxJava开发之路:JavaSE,MySQL,前端(html,css,js),javaweb,SSM框架,SpringBootvue,SpringCloud,(mybatis-plusgit)LinuxLinux操作系统:Window、Mac消息队列(Kafka,RabbitMQ,RockeetMQ)缓存(Redis)搜索引擎(ElasticSearch)集群分布式(需要购买
- 【Python-网络爬虫】爬虫的基础概念介绍
敖云岚
python爬虫开发语言
目录一、爬虫的介绍1.1爬虫的概念1.2爬虫的作用1.搜索引擎数据索引2.商业数据采集与分析3.舆情监控与社交分析4.学术研究与数据挖掘5.信息聚合与服务优化二、爬虫的分类三、爬虫的基本流程3.1基本流程3.2Robots协议一、爬虫的介绍1.1爬虫的概念爬虫的概念:通过模拟浏览器发送请求,从而获取响应1.2爬虫的作用1.搜索引擎数据索引搜索引擎如Google、百度等依赖爬虫技术构建庞大的网页索引
- 大语言模型 LLM 通过 Excel 知识库 增强日志分析,根因分析能力的技术方案(1):总体介绍
shiter
人工智能系统解决方案与技术架构语言模型excel人工智能
文章大纲1.核心目标2.系统总体架构3.GoogleCloud端到端方案(含无RAG&RAG双模式)3.1无RAG:Function-Calling查表模式3.2RAG:托管式向量检索4.开源轻量级方案5.数字孪生联合验证(实验性)6.知识图谱增强(Neo4j)7.监控与持续优化(CometLLM)8.实施路线图(4~10周)9.典型案例速览10.一键复现仓库11.参考文献1.核心目标让LLM在“
- Elasticsearch 索引的批量操作深度剖析
北漂老男人
Elasticsearchelasticsearch大数据搜索引擎全文检索
Elasticsearch索引的批量操作深度剖析一、前言在大数据和实时检索的场景下,Elasticsearch作为分布式搜索引擎,批量操作(如批量查询、批量增删改)是提升吞吐量、降低资源消耗的核心手段。本文将围绕批量操作主流程,结合源码、伪代码、流程图、实际场景和优化技巧,系统性剖析其实现原理与高级用法,助你深入理解和高效使用Elasticsearch。二、主流程环节与设计思想1.基于_mget的
- 使用 Tavily Search API 构建智能搜索工具
TavilySearchAPI是一种专门为AI代理(如大型语言模型)设计的搜索引擎,能够快速、准确地提供实时且符合实际的结果。在本文中,我们将介绍如何集成TavilySearchAPI,并通过代码示例展示其实际应用。技术背景介绍在AI开发中,获取实时、准确的信息是构建智能应用的关键。传统的搜索引擎有时可能无法满足AI代理对快速和准确信息的需求。TavilySearchAPI提供了这一解决方案,使得
- RAG面试内容整理-1. 检索增强生成(RAG)概述与意义
不务正业的猿
面试AI面试RAG人工智能算法大模型检索
检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种将大语言模型与外部知识库相结合的生成式AI架构。传统的大型预训练语言模型(LLM)容易受到训练语料限制,面对超出其知识范围或需要最新信息的查询时可能产生“幻觉”。RAG通过在生成答案前检索相关文档片段,引入新鲜、可信的知识,从而提升回答的准确性和时效性。RAG系统包含两个核心组件:检索器(Retriever)和
- 利用 Tavily Search API 提升 AI 代理的搜索能力
VYSAHF
人工智能microsoftpython
技术背景介绍在人工智能代理的开发中,实时、准确的数据获取能力至关重要。TavilySearchAPI是专为大型语言模型(LLMs)设计的搜索引擎,它能够以极高的速度提供实时、准确且事实驱动的结果,对AI开发者来说是一项极具价值的工具。核心原理解析TavilySearch通过专门优化的搜索算法和高效的索引机制,确保其能够应对复杂的自然语言查询。它不仅提供传统的文本结果,还能返回结构化的答案和相关的多
- 搜索引擎简介
搜索流程架构设计需兼顾海量数据处理能力、低延迟查询响应和结果相关性等。数据采集爬虫系统:从种子URL递归抓取,遵循robots协议(网站通过robots.txt声明哪些内容可抓取),避免违规抓取。数据预处理将原始数据(如HTML网页)转化为结构化、可索引的内容,提升后续索引和检索效率。网页解析与清洗:提取有效内容:从HTML中剥离标签(如),保留文本、标题、摘要、关键词等;排除广告、导航栏等冗余信
- Elasticsearch安装中文分词器elasticsearch-analysis-ik 大数据
JieLun_C
大数据elasticsearch中文分词
Elasticsearch安装中文分词器elasticsearch-analysis-ik大数据近年来,随着大数据技术的不断发展,搜索引擎的应用需求也日益增加。而对于中文搜索引擎而言,一个好用的中文分词器是至关重要的。在Elasticsearch中,我们可以使用elasticsearch-analysis-ik插件来实现中文分词功能。本文将为大家详细介绍在安装和配置elasticsearch-an
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓