- 企业级RAG的数据方案选择 - 向量数据库、图数据库和知识图谱
南七小僧
AI技术产品经理网站开发人工智能数据库知识图谱人工智能
如何为企业RAG选择合适的数据存储方式摘要:本文讨论了矢量数据库、图数据库和知识图谱在解决信息检索挑战方面的重要性,特别是针对企业规模的检索增强生成(RAG)。看看海外人工智能企业Writer是如何利用知识图谱增强企业级RAG。要点概要:矢量数据库高效存储数据,但缺乏上下文和关联信息。图数据库优先考虑数据点之间的关系,受益于关系结构。知识图谱在语义存储方面表现出色,由于其能够编码丰富的上下文信息,
- Langchain学习笔记(十):文档加载与处理详解
注:本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。前言在构建基于大语言模型的应用时,文档处理是一个至关重要的环节。无论是构建RAG(检索增强生成)系统,还是进行知识库问答,我们都需要将各种格式的文档转换为模型可以理解和处理的形式。Langchain提供了强大的文档加载和处理功能,支持多种文件格式,并提
- 基于知识图谱技术增强大模型RAG知识库应用效果
罗伯特之技术屋
知识图谱人工智能
【摘要】本文是AI落地实践的优秀案例,利用RAG技术(Retrieval-AugmentedGeneration,检索增强生成)的知识库实践为背景,介绍了RAG技术的发展及存在的不足,以及知识图谱相关的知识,利用RAG技术去完善和智能化知识图谱。在AI技术大量涌现,但应用不足的情况下,指明了现有应用场景、技术与AI结合的具体做法。1.引言随着人工智能技术的加速演进,AI大模型如雨后春笋般纷纷涌现,
- 构建高效 RAG 流程的七个关键点及其落地实践
charles666666
搜索引擎大数据需求分析交互笔记数据库
人工智能应用浪潮中,检索增强生成(RAG)技术凭借着结合大型语言模型(LLMs)的生成能力和信息检索系统的独特优势,成为了各企业挖掘数据价值、提升业务智能化水平的关键手段之一。然而,构建一个高效且精准的RAG流程并非易事,其中存在着诸多关键点和挑战。作为一名非资深IT技术顾问,我将基于丰富的实战经验,为大家深入剖析构建高效RAG流程的七个关键点及其落地实践。一、文档解析:混合格式的“第一道坎”在企
- 盘点返利最高的十个购物返利APP,返利软件哪个最好用
测评君高省
随着电商平台的崛起各种返利APP层出不穷,且鱼龙混杂!用户往往很容易被所谓的团队长带入坑,本想着能实惠购物,却无意中白白上了套,买了贵的商品,少了该有的返利!今天我们对比目前市面上主流的返利APP,看看哪家的返利更高,购物更优惠!1、是安全免费的,这是最基本前提2、佣金是最高3、对接的购物平台是最全面的对前10名淘宝优惠券返利平台做了个测结果如图:感兴趣的朋友也可以下载APP搜搜看测评产品:如图这
- 【速通RAG实战:进阶】16、AI生成思维导图全技术解析
无心水
速通RAG实战!解锁AI2.0高薪密码人工智能AI思维导图知识图谱markmap-jsQwen-long模型CSDN技术干货
一、AI生成思维导图的底层技术逻辑(一)知识结构化的核心流程AI生成思维导图的本质是非结构化文本到结构化知识图谱的转化,其技术流程可拆解为五大核心环节:1.语义解析与实体抽取多模态输入处理:支持文本(Markdown/Word/PDF)、语音(会议录音)、手写笔记(图片OCR)等多形式输入,通过TesseractOCR识别图片文字,Whisper处理语音流。实体识别技术栈:#中英文混合实体识别示例
- RAG流程中,要怎么对文本进行拆词?
java干货仓库
八股文汇总大模型面试人工智能自然语言处理llama
在RAG(Retrieval-AugmentedGeneration)流程中,对文本的拆词(Tokenization)是影响检索和生成效果的关键步骤。以下是文本拆词的技术细节及优化方法:1.拆词的核心目标检索阶段:确保查询(Query)和文档(Document)的拆词方式一致,提高检索匹配精度。生成阶段:适配大模型的词表,避免生成时的OOV(Out-of-Vocabulary)问题。2.常见拆词方
- RAGFlow 框架调研报告
it_czz
架构
RAGFlow框架调研报告1.概述RAGFlow是一个开源的检索增强生成(RAG)框架,专注于深度文档理解和高精度检索。它通过先进的文档解析能力和可视化调试功能,为企业提供了一个强大的知识库问答解决方案。1.1核心特性深度文档处理:内置DeepDoc引擎,支持复杂文档解析高精度检索:提供可视化分块和引用追踪多模态支持:支持文本、图片、PDF、Excel等多种格式开源自托管:完全开源,支持私有化部署
- 香港优才计划中介哪家好上海?排行榜前五名机构横评对比
香港优才计划身份者
香港优才计划中介哪家好上海?排行榜前五名机构横评对比相信你看到这篇文章的时候,一定对香港优才计划有了一定程度的了解,其优势和好处,不仅对自己的事业,还是子女的教育有很大的帮助!但是由于自己对香港优才的政策和流程了解的不是很清楚,所以寄希望于寻找一家靠谱的香港优才计划中介机构委托办理。目前,市面上的香港优才计划中介机构有很多,鱼龙混杂,办事效率也是好坏参半,如果不谨慎选择,就会踩坑。下面,埃文优才说
- 真的骗局!龙祥辉龙哥祥汇决赛预备群CTB慈善助力骗局曝光!受害者亲身讲述无法提现内幕!
正义青天
网上交友,相谈甚欢,“祥汇联社龙哥”(假冒)毫不吝啬的给你分享赚钱的门道,带你进行项目投资承诺稳赚不赔,你以为遇到了“理财大师”,准备跟着“大赚一笔”走上人生巅峰的时候,其实你已经陷入骗子设下的圈套,群里面200多个人,全部是托,他们能给你一个聊天号,为什么他们自己就不能再创立200多个虚拟号,放在群里,鱼龙混杂掩人耳目的欺骗你!你看到别人的充值截图也好,买黄金的发票和实物也罢,都是骗子精心准备的
- 电表箱识别漏检率高?陌讯算法实测降 90%
在电力巡检领域,电表箱状态识别一直是计算机视觉技术落地的难点。传统人工巡检模式下,一个台区的200个电表箱需2名巡检员耗时1天完成,且受光线、天气影响,误判率常超过15%。而采用普通开源算法部署的自动识别系统,又面临箱体污渍遮挡、表计型号混杂、边缘计算设备算力有限等多重挑战,实际商用时mAP(平均精度)往往跌破70%,难以满足电力行业的可靠性要求技术解析:从传统方法到陌讯创新架构传统电表箱识别多采
- Java中的模型API、RAG与向量数据库:构建智能应用的新范式
张道宁
人工智能
引言在当今人工智能迅猛发展的时代,Java开发者如何利用最新的AI技术构建智能应用?本文将深入探讨模型API、检索增强生成(RAG)和向量数据库这三种关键技术,以及它们如何协同工作来提升Java应用的智能化水平。一、模型API:Java中的AI能力接入1.1什么是模型API模型API是大型语言模型(LLM)提供的编程接口,允许开发者通过HTTP请求与AI模型交互。在Java生态中,我们可以通过多种
- Java AI面试实战:Spring AI与RAG技术落地
GEM的左耳返
Java场景面试宝典Java面试SpringAIRAG向量数据库AI应用Prompt工程
JavaAI面试实战:SpringAI与RAG技术落地面试现场:AI技术终面室面试官:谢飞机同学,今天我们聚焦JavaAI应用开发,重点考察SpringAI和RAG技术栈。谢飞机:(兴奋地)面试官好!我可是AI达人!ChatGPT、Midjourney我天天用,SpringAI这新框架我也研究过!第一轮:SpringAI基础面试官:请详细描述SpringAI的核心组件及PromptTemplate
- RAG 技术落地:从文档处理到模型输出,细节决定大模型应用效果
RAG技术落地:从文档处理到模型输出,细节决定大模型应用效果基于经典的RAG(检索增强生成)流程,我们能快速搭建大模型相关应用,但实际落地中,细节把控直接决定应用效果能否达到上线标准。从文档读取到最终回复用户,每个环节都暗藏技术挑战,唯有逐一攻克,才能让RAG应用真正发挥价值。文档处理:RAG的基础工程难题RAG流程的第一步是文档处理,这看似简单,实则暗藏诸多挑战。实际场景中需要处理的文档类型繁杂
- 打造专属知识库:手把手教你构建RAG系统
RAG通常指的是"Retrieval-AugmentedGeneration",即“检索增强的生成”。这是一种结合了检索(Retrieval)和生成(Generation)的机器学习模型,通常用于自然语言处理任务,如文本生成、问答系统等。我们通过一下几个步骤来完成一个基于京东云官网文档的RAG系统数据收集建立知识库向量检索提示词与模型数据收集数据的收集再整个RAG实施过程中无疑是最耗人工的,涉及到
- 带单爆仓!北恒私募周一丰量化私募实盘大赛不能出金套路手段让人费解!不让提款出金曝光!难友讲述被骗真相
正义青天
网上交友,相谈甚欢,“周一丰”(假冒)毫不吝啬的给你分享赚钱的门道,带你进行项目投资承诺稳赚不赔,你以为遇到了“理财大师”,准备跟着“大赚一笔”走上人生巅峰的时候,其实你已经陷入骗子设下的圈套,群里面200多个人,全部是托,他们能给你一个聊天号,为什么他们自己就不能再创立200多个虚拟号,放在群里,鱼龙混杂掩人耳目的欺骗你!你看到别人的充值截图也好,买黄金的发票和实物也罢,都是骗子精心准备的照片而
- 大语言模型 LLM 通过 Excel 知识库 增强日志分析,根因分析能力的技术方案(1):总体介绍
shiter
人工智能系统解决方案与技术架构语言模型excel人工智能
文章大纲1.核心目标2.系统总体架构3.GoogleCloud端到端方案(含无RAG&RAG双模式)3.1无RAG:Function-Calling查表模式3.2RAG:托管式向量检索4.开源轻量级方案5.数字孪生联合验证(实验性)6.知识图谱增强(Neo4j)7.监控与持续优化(CometLLM)8.实施路线图(4~10周)9.典型案例速览10.一键复现仓库11.参考文献1.核心目标让LLM在“
- RAG面试内容整理-1. 检索增强生成(RAG)概述与意义
不务正业的猿
面试AI面试RAG人工智能算法大模型检索
检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种将大语言模型与外部知识库相结合的生成式AI架构。传统的大型预训练语言模型(LLM)容易受到训练语料限制,面对超出其知识范围或需要最新信息的查询时可能产生“幻觉”。RAG通过在生成答案前检索相关文档片段,引入新鲜、可信的知识,从而提升回答的准确性和时效性。RAG系统包含两个核心组件:检索器(Retriever)和
- RAG 技术深度面试题:架构、优化与实践应用
居7然
大模型面试架构人工智能机器学习算法面试
1.RAG基础架构设计问题:对比单阶段检索(Single-stageRetrieval)与两阶段检索(Two-stageRetrieval)在RAG系统中的架构差异,说明在企业知识库场景下为何优先选择两阶段检索?答案:单阶段检索直接通过向量数据库对用户query进行一次相似度匹配返回结果,架构简单但精度有限;两阶段检索则先通过召回阶段(如向量检索+关键词检索)获取候选文档,再通过重排序阶段(如Cr
- 国内最好高仿鞋哪里做的最好
广州潮品汇
最好高仿鞋哪里做的最好高仿鞋有好货与通货(重点),为什么我只说好货和通货,这个时候小伙伴们的疑问就来啦:A货、超A、厂货、原厂、原单、尾单、外贸原单,真标公司,裁片级,无差别级,可能还有一大堆名词,这些货呢。通货就是A货甚至更差的货,而剩下的所有叫法就是好货不同的叫法罢了高仿鞋子哪里可以买,平常的话高仿可以在本地的一些高仿市场买到,广州是全国甚至全球最大的高仿品牌集中地,市场品牌鱼龙混杂在广州这里
- 揭秘10个渠道了解了解一比一复刻奢侈品服装
金源皮具
近年来,奢侈品市场蓬勃发展,但高昂的价格让许多消费者望而却步。于是,一比一复刻奢侈品服装应运而生,以其度和相对低廉的价格吸引了众多消费者。然而,复刻市场鱼龙混杂,如何才能找到靠谱的渠道,避免踩雷呢?本文将为您揭秘10个了解一比一复刻奢侈品服装的渠道,助您轻松找到心仪的商品。▼更多详情请添加文章最下面微信号进行咨询▼一、社交媒体平台1.微信朋友圈:许多复刻商家会在朋友圈发布产品信息,图片、视频一应俱
- 生成式引擎优化(GEO):AI携手迈向搜索引擎智能新时代
GEO优化助手
生成式引擎优化GEO优化AI搜索优化搜索引擎人工智能GEO生成式引擎优化
生成式引擎优化(GEO):AI携手迈向搜索引擎智能新时代一、技术范式重构:从关键词匹配到语义共生在人工智能技术驱动下,搜索引擎正经历从"信息检索工具"向"认知决策伙伴"的范式转变。生成式引擎优化(GEO)作为连接内容生产与AI理解的桥梁,通过三大技术支柱重塑搜索生态:检索增强生成(RAG)架构夸克平台采用自研Qwen推理模型构建向量数据库,实现分钟级知识图谱更新。医疗设备企业通过API接口同步实时
- 「大模型应用」(2)RAG的检索与rerank
木楚子
bgererankrag语言模型
0.基础内容我们先来介绍几种检索方式,在RAG(Retrieval-AugmentedGeneration,检索增强生成)框架中,稀疏检索器(SparseRetriever)和密集检索器(DenseRetriever)是两种核心的文档检索方式,它们的主要作用是:从海量知识库中找出与用户输入相关的文档,供语言模型参考生成回答。一、稀疏检索器(SparseRetriever)✅基本原理稀疏检索器通常基
- RAG、Function Call、MCP技术笔记
大佐不会说日语~
面试笔记篇笔记
核心概念理解这三种技术都是为了增强大模型能力的重要手段,但各有侧重点和应用场景。RAG(检索增强生成)RAG本质上是为大模型外接一个动态知识库。当模型需要回答问题时,先从知识库中检索相关信息,再结合检索结果生成答案。核心原理:将文档内容进行向量化存储(通常使用Embedding模型)用户提问时,将问题也向量化通过相似度计算(如欧氏距离、余弦相似度)找到最相关的文档片段将检索到的内容作为上下文传给大
- RAG面试内容整理-3. 向量检索原理与常用库(ANN、FAISS、Milvus 等)
不务正业的猿
面试LangChainAI面试职场和发展大模型RAGAI人工智能算法
向量检索利用向量空间的相似度来查找相关内容,是近年来兴起的检索技术核心。其基础是在语义嵌入(embedding)模型的支持下,将文本、图像等数据表示为高维向量,以便通过向量相似度(如余弦相似度或欧氏距离)找到内容上的邻近项。由于直接精确计算所有向量之间的距离在大规模下计算开销巨大,实际系统通常采用近似最近邻搜索(ApproximateNearestNeighbor,ANN)算法,在保证结果精度接近
- 小帅潮鞋今年口碑很好,小帅潮鞋在莆田鞋十大良心微商能排第几名?
可爱的调皮捣蛋鬼
莆田鞋微商现在鱼龙混杂,个样式的都有很难分辨,根据2024年网络评选出莆田鞋十大良心微商排行榜,马上揭晓!!!一、第一名:小帅潮鞋不负众望果然是小帅潮鞋支持率最高!小帅潮鞋档口是莆田市最好的一家了,大家可以放心入手,他家都是纯原和顶级纯原的品质,个别款式因为没有顶级的公司级就是最高品质,其他的低端的他们家不做,质量不好的给他们也不卖,他家发货前三遍质检这在莆田档口是绝无仅有的,需要的可以放心入手!
- LightRAG进阶:跨域知识库构建与Agent协同推理实战
目录一、架构演进:从单域RAG到跨域智能体协同二、跨域知识库构建实战(四步落地)步骤1:异构数据联邦接入步骤2:增量更新热加载机制三、Agent协同推理引擎(工业级代码)核心Agent结构(TypeScript实现)流式响应处理(WebSocket实现)四、性能压测数据(百万级文档场景)五、生产级部署方案(安全合规)安全审计关键点K8s部署拓扑六、技术前瞻:通往自适应RAG框架附录:完整技术图谱如
- 告别传统搜索:基于AI的知识库构建全流程解析
AI量化价值投资入门到精通
人工智能ai
告别传统搜索:基于AI的知识库构建全流程解析1.标题(Title)以下是5个吸引人的标题选项,涵盖核心关键词"AI知识库"、“全流程”、“告别传统搜索”:从零到一:构建你的AI驱动知识库,让信息检索迈入智能时代告别关键词依赖:基于RAG技术的AI知识库全流程实战指南传统搜索OUT了!手把手教你搭建企业级AI知识库(附完整代码)从数据到智能问答:AI知识库构建的9大核心步骤与技术选型解锁知识管理新范
- 真的骗局!龙哥祥汇决赛预备群CTB慈善助力骗局曝光!受害者亲身讲述无法提现内幕!
正义青天
网上交友,相谈甚欢,“祥汇联社龙哥”(假冒)毫不吝啬的给你分享赚钱的门道,带你进行项目投资承诺稳赚不赔,你以为遇到了“理财大师”,准备跟着“大赚一笔”走上人生巅峰的时候,其实你已经陷入骗子设下的圈套,群里面200多个人,全部是托,他们能给你一个聊天号,为什么他们自己就不能再创立200多个虚拟号,放在群里,鱼龙混杂掩人耳目的欺骗你!你看到别人的充值截图也好,买黄金的发票和实物也罢,都是骗子精心准备的
- RAG实战指南 Day 24:上下文构建与提示工程
【RAG实战指南Day24】上下文构建与提示工程文章内容开篇欢迎来到"RAG实战指南"系列的第24天!今天我们将深入探讨RAG系统中至关重要的上下文构建与提示工程技术。在检索增强生成系统中,如何有效地组织检索到的文档片段,并将其转化为适合大语言模型(LLM)处理的提示,直接决定了最终生成结果的质量。本文将系统讲解上下文构建的最佳实践和高级提示工程技术,帮助您构建更精准、更可靠的RAG应用。理论基础
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s