语音情感识别(Speech Emotion Recognition, SER)是指通过分析和处理人的语音信号来识别其情感状态。常见的情感状态包括愤怒、喜悦、悲伤、惊讶等。基于Pytorch的语音情感识别系统使用深度学习技术,通过训练神经网络模型来实现情感识别任务。
下面是实现上述四个功能的代码示例。为了便于理解,我们将使用 Python 以及一些常用的库来实现这些功能。
我们将使用 nltk
和 TextBlob
库来进行情绪分析:
from textblob import TextBlob
def analyze_sentiment(text):
blob = TextBlob(text)
sentiment = blob.sentiment.polarity
if sentiment > 0:
return "Positive"
elif sentiment < 0:
return "Negative"
else:
return "Neutral"
# 示例
customer_input = "I'm really unhappy with the service I received."
sentiment = analyze_sentiment(customer_input)
print(f"Customer sentiment: {sentiment}")
我们可以使用 speech_recognition
和 pyttsx3
来实现简单的语音助手功能:
import speech_recognition as sr
import pyttsx3
def listen_and_respond():
recognizer = sr.Recognizer()
engine = pyttsx3.init()
with sr.Microphone() as source:
print("Listening...")
audio = recognizer.listen(source)
try:
query = recognizer.recognize_google(audio)
print(f"You said: {query}")
if 'hello' in query.lower():
response = "Hello! How can I assist you today?"
else:
response = "I'm sorry, I didn't understand that."
engine.say(response)
engine.runAndWait()
except sr.UnknownValueError:
print("Sorry, I could not understand the audio.")
except sr.RequestError:
print("Could not request results from Google Speech Recognition service; check your network connection.")
listen_and_respond()
我们可以结合语音识别与情绪分析来进行简单的心理健康监测:
import speech_recognition as sr
from textblob import TextBlob
def monitor_mental_health():
recognizer = sr.Recognizer()
with sr.Microphone() as source:
print("Please say something for mental health monitoring...")
audio = recognizer.listen(source)
try:
text = recognizer.recognize_google(audio)
print(f"You said: {text}")
blob = TextBlob(text)
sentiment = blob.sentiment.polarity
if sentiment > 0.5:
status = "Very Positive"
elif sentiment > 0:
status = "Positive"
elif sentiment == 0:
status = "Neutral"
elif sentiment > -0.5:
status = "Negative"
else:
status = "Very Negative"
print(f"Mental Health Status: {status}")
except sr.UnknownValueError:
print("Sorry, I could not understand the audio.")
except sr.RequestError:
print("Could not request results from Google Speech Recognition service; check your network connection.")
monitor_mental_health()
同样,我们可以使用文本情绪分析来帮助教师了解学生情绪:
from textblob import TextBlob
def evaluate_student_sentiment(student_comments):
sentiments = []
for comment in student_comments:
blob = TextBlob(comment)
sentiment = blob.sentiment.polarity
sentiments.append(sentiment)
average_sentiment = sum(sentiments) / len(sentiments)
if average_sentiment > 0:
overall_emotion = "Positive"
elif average_sentiment < 0:
overall_emotion = "Negative"
else:
overall_emotion = "Neutral"
return overall_emotion
# 示例
student_comments = [
"I really enjoyed today's class.",
"The lesson was a bit too fast.",
"I'm struggling to understand some concepts."
]
overall_sentiment = evaluate_student_sentiment(student_comments)
print(f"Overall student sentiment: {overall_sentiment}")
语音情感识别系统的核心是构建一个能够从语音信号中提取特征并分类情感状态的深度学习模型。常见的方法包括:
pip install torch torchaudio librosa numpy
假设我们使用的是RAVDESS
数据集,该数据集包含了多种情感的语音样本。
import librosa
import numpy as np
def extract_features(file_name):
y, sr = librosa.load(file_name)
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)
return np.mean(mfccs.T, axis=0)
import torch
import torch.nn as nn
import torch.optim as optim
class EmotionRecognizer(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(EmotionRecognizer, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
out, _ = self.lstm(x)
out = self.fc(out[:, -1, :])
return out
input_dim = 40
hidden_dim = 128
output_dim = 8 # 假设我们有8种情感
model = EmotionRecognizer(input_dim, hidden_dim, output_dim)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader, TensorDataset
# 加载数据并提取特征
features, labels = [], []
for file in data_files:
features.append(extract_features(file))
labels.append(get_label_from_file(file))
features = np.array(features)
labels = np.array(labels)
# 分割数据为训练集和验证集
X_train, X_val, y_train, y_val = train_test_split(features, labels, test_size=0.2)
# 创建DataLoader
train_dataset = TensorDataset(torch.tensor(X_train, dtype=torch.float32), torch.tensor(y_train, dtype=torch.long))
val_dataset = TensorDataset(torch.tensor(X_val, dtype=torch.float32), torch.tensor(y_val, dtype=torch.long))
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
model.train()
for inputs, targets in train_loader:
outputs = model(inputs.unsqueeze(1))
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 验证模型
model.eval()
val_loss = 0
with torch.no_grad():
for inputs, targets in val_loader:
outputs = model(inputs.unsqueeze(1))
loss = criterion(outputs, targets)
val_loss += loss.item()
print(f'Epoch {epoch+1}, Loss: {loss.item()}, Val Loss: {val_loss/len(val_loader)}')
def predict(model, file_name):
model.eval()
features = extract_features(file_name)
with torch.no_grad():
inputs = torch.tensor(features, dtype=torch.float32).unsqueeze(0).unsqueeze(1)
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
return predicted.item()
test_file = "path_to_test_file.wav"
emotion = predict(model, test_file)
print(f'The predicted emotion is: {emotion}')
可以将训练好的模型部署在服务器端,接收来自客户端的语音文件,并返回对应的情感预测结果。也可以集成到移动应用中,实现实时的情感识别。
基于Pytorch的语音情感识别系统利用深度学习技术,通过训练神经网络模型,对语音信号中的情感状态进行识别。这类系统具备广泛的应用场景,从客户服务到心理健康监测,都能发挥重要作用。
随着深度学习技术的发展,语音情感识别系统将变得更加准确和高效。同时,多模态情感识别(结合语音、视觉等信息)将成为未来的重要研究方向,进一步提升情感识别的准确率和适用性。