Leetcode 刷题笔记1 动态规划part04

leetcode 最后一块石头的重量 ||

问题转化, 把石头问题转化为背包问题,在target容量范围内所能装的最大石头重量

class Solution:
    def lastStoneWeightII(self, stones: List[int]) -> int:
        total = sum(stones)
        target = total // 2
        dp = [0] * (target + 1)
        for stone in stones:
            for j in range(target, stone - 1, -1):
                dp[j] = max(dp[j], dp[j - stone] + stone)
        return total - 2 * dp[target]

leetcode 494 目标和

本题的关键在于问题转化,给出具体数值的就可以反推出来正数和,就可以使用动态规划

class Solution:
    def findTargetSumWays(self, nums: List[int], target: int) -> int:
        total = sum(nums)
        if abs(target) > total:
            return 0
        if (target + total) % 2 == 1:
            return 0
        target_sum = (total + target) // 2
        dp = [0] * (target_sum + 1)
        dp[0] = 1
        for num in nums:
            for j in range(target_sum, num - 1, -1):
                dp[j] += dp[j - num]
        return dp[target_sum]

leetcode 474 一和零

什么样的问题可以转化为动态规划的问题呢?

数据分布式,在遍历中能够从一个结果推出另一个结果

本题转化为两个01背包问题

class Solution:
    def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        for s in strs:
            zeroNum = s.count('0')
            oneNum = len(s) - zeroNum
            for i in range(m, zeroNum -1 , -1):
                for j in range(n, oneNum - 1, -1):
                    dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1)
        return dp[m][n]

你可能感兴趣的:(leetcode,笔记,动态规划)