- MotionLCM 部署优化 踩坑解决bug
AI算法网奇
aigc与数字人深度学习宝典文生motion
目录依赖项windowstorchok:渲染黑白图问题解决:humanml3d:sentence-t5-large下载数据:报错:Nomodulenamed'sentence_transformers'继续报错:fromtransformers.integrationsimportCodeCarbonCallback解决方法:推理相关转mesh:module‘matplotlib.cm‘hasno
- 基于深度学习的目标检测算法综述:从RCNN到YOLOv13,一文看懂十年演进!
人工智能教程
深度学习目标检测算法人工智能自动驾驶YOLO机器学习
一、引言:目标检测的十年巨变2012年AlexNet拉开深度学习序幕,2014年RCNN横空出世,目标检测从此进入“深度时代”。十年间,算法从两阶段到单阶段,从Anchor-base到Anchor-free,从CNN到Transformer,从2D到3D,从监督学习到自监督学习,迭代速度之快令人目不暇接。本文将系统梳理基于深度学习的目标检测算法,带你全面了解技术演进、核心思想、代表算法、工业落地与
- 视觉Transformer还有哪些点可以研究?怎么应用?
计算机视觉工坊
3D视觉从入门到精通学习算法开源
0.这篇文章干了啥?今天笔者为大家推荐一篇最新的综述,详细总结了Transformer的网络架构、优化策略、发展方向,还会定期更新Github,研究注意力机制的小伙伴一定不要错过。注意机制有助于人类视觉系统有效地分析和理解复杂场景,它能够聚焦于图像的关键区域,同时忽略无关紧要的部分。受此概念启发,注意机制已经被引入到计算机视觉(CV)中,以动态地为图像中的不同区域分配权重。这使得神经网络能够专注于
- 【AI大模型:前沿】43、Mamba架构深度解析:为什么它是Transformer最强挑战者?
无心水
架构transformerMambaMamba架构AI大模型系统开发实战AI大模型高手开发AI大模型系统实战
Transformer架构自2017年诞生以来,一直是NLP、计算机视觉等领域的“统治级”模型架构。但随着序列长度需求的增长(如128K长文本处理、基因组学超长序列分析),其自注意力机制的O(n2)O(n^2)O(n2)计算复杂度成为难以逾越的瓶颈。2023年底,由AlbertGu和TriDao等人提出的Mamba架构,通过创新的“选择性状态空间模型(SelectiveSSM)”实现了线性复杂度(
- Llama 2 模型架构深度解析:Transformer的进化
SuperAGI架构师的AI实验室
AI大模型应用开发宝典llama架构transformerai
Llama2模型架构深度解析:Transformer的进化关键词:Llama2、Transformer、模型架构、进化、人工智能摘要:本文将深入剖析Llama2的模型架构,探讨它作为Transformer进化版本的独特之处。从背景知识的介绍,到核心概念的解释,再到算法原理、实战案例以及实际应用场景等方面,为读者全面展现Llama2的魅力和价值。通过通俗易懂的语言,让即使是对技术不太熟悉的读者也能理
- 【Python】Python+sentence-transformers框架实现相似文本识别
宅男很神经
python开发语言
第一章:文本相似度与语义表示概述在深入sentence-transformers框架之前,我们首先需要对文本相似度计算及其背后的核心概念——语义表示,有一个清晰且全面的理解。这构成了后续所有讨论的基础。1.1什么是文本相似度?1.1.1定义与重要性文本相似度(TextSimilarity)是指衡量两段文本(可以是词、短语、句子、段落或整个文档)在意义或内容上相近程度的指标。这种相近可以是字面上的(
- 揭秘Transformer架构:残差流与隐藏层的关系
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythontransformer深度学习人工智能linux算法
在Transformer架构的LLM中,“残差流”(residualstream)和“隐藏层”(hiddenlayers)是密切相关但不同的概念,前者是层间流动的核心数据,后者是处理这些数据的结构单元。1.残差流(ResidualStream):层间传递的“信息流”残差流指的是在Transformer层之间传递的核心张量,它是模型中“流动”的数据载体。其本质是通过“残差连接”(residualco
- MATLAB实现基于GA-CNN-BiLSTM-Attention遗传算法(GA)优化卷积双向长短期记忆神经网络融合注意力机制进行多变量时序预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码神经网络matlabcnn支持向量机人工智能大数据深度学习
目录MATLAB实现基于GA-CNN-BiLSTM-Attention遗传算法(GA)优化卷积双向长短期记忆神经网络融合注意力机制进行多变量时序预测的详细项目实例...2项目背景介绍...2项目目标与意义...31.提高多变量时序预测的准确性...32.弥补传统方法的局限性...33.提高模型训练效率...3
- 多维时序 | Matlab实现GA-LSTM-Attention遗传算法优化长短期记忆神经网络融合注意力机制多变量时间序列预测
天天Matlab代码科研顾问
预测模型神经网络matlablstm
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍风力发电是一种清洁能源,越来越受到人们的关注和重视。然而,由于风力发电的不稳定性和不可控性,风电预测成为了一个至关重要的问题。为了更精准地预测风电发电量,许多研究者开始尝试利
- GWO-CNN-BiLSTM-Attention多变量多步时间序列预测 | Matlab实现灰狼算法优化卷积双向长短期记忆融合注意力机制
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:时间序列预测在各个领域具有广泛的应用,而多变量多步时间序列预测由于其复杂性和挑战性,一直是研究热点。本文提出了一种基于灰狼算法(GreyWolfOptimizer,GWO)优化的卷积神经网络(Conv
- 【代码问题】【模型部署】部署千问时,ImportError: Cannot import available module of Qwen2_5_VLForConditionalGeneration
Catching Star
pythonpytorch开发语言
多半是环境的问题,最主要的是python版本要高python==3.12.9accelerate==1.8.1pipinstallqwen-vl-utils[decord]==0.0.8peft==0.14.0transformers==4.52.3torch==2.7.0torchvision==0.22.0modelscope==1.27.1
- 人工智能自然语言处理:Transformer 模型详解
大力出奇迹985
人工智能自然语言处理transformer
一、Transformer模型的诞生背景在自然语言处理的漫长征程中,早期的传统模型,如循环神经网络(RNN)及其变体长短时记忆网络(LSTM),曾占据主导地位。RNN试图通过依次处理序列中的每个元素,来捕捉上下文信息。但它存在一个致命弱点,在处理长序列时,会面临梯度消失或梯度爆炸的问题,就像一个长途跋涉的旅人,随着路程的增加,逐渐忘记了出发时的目标和重要信息。LSTM虽然在一定程度上缓解了这个问题
- 用Python构建机器学习模型预测股票趋势:从数据到部署的实战指南
SaleCoder
python机器学习开发语言Python股票预测LSTM股票模型机器学习股票趋势
引言在AI驱动的金融时代,机器学习股票趋势预测已成为投资者和开发者关注的热点。通过Python,我们可以构建智能模型,分析历史数据并预测未来股价走势。这不仅结合了时间序列分析和深度学习技术,还能帮助用户做出更明智的投资决策。本文将详细指导你用Python从零构建一个LSTM股票模型,结合线性回归作为基准,融入常用股票预测方法如移动平均和特征工程。我们会使用真实数据(如苹果股票),强调模型的难度与高
- LightGBM+Transformer-LSTM多变量回归交通流量预测,附模型研究报告(Matlab)
matlab科研助手
transformerlstm回归
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍交通流量预测作为智能交通系统(ITS)的核心组成部分,对城市规划、交通管理、交通诱导和出行决策具有至关重要的意义。准确、可靠的流量预测能够有效缓解交通拥堵,提高道路利用率,降
- AAAI 2024 | TMFormer:用于缺失模态脑肿瘤分割的令牌合并Transformer
小白学视觉
医学图像处理论文解读transformer深度学习人工智能AAAI论文解读计算机顶会
论文信息题目:TMFormer:TokenMergingTransformerforBrainTumorSegmentationwithMissingModalitiesTMFormer:用于缺失模态脑肿瘤分割的令牌合并Transformer作者:ZheyuZhang,GangYang,YueyiZhang,HuanjingYue,AipingLiu,YunweiOu,JianGong,Xiaoy
- 零基础完整版入门经典深度学习时间序列预测项目实战+最新前沿时间序列预测模型代码讲解学习整理(附完整可运行代码)
OverOnEarth
时间序列预测项目实战深度学习学习人工智能
专栏内容本专栏主要整理了作者在时间序列预测领域内的一些学习思路与代码整理,帮助大家在初进入此领域时,可以快速掌握代码进行实战操作,对代码的操作再结合论文阅读肯定是上升更快嘛,作者也愿意和大家一起讨论进步,下面的内容会逐步更新,作者主页的资源列也会放出一些可下载的资源供大家参考学习噢。一、LSTM时间序列预测完整代码示例学习分析(pytorch框架)精选试读文章二、LSTM多变量输入实现多步预测完整
- 【AIGC调研系列】敢于挑战Transformer的新架构Megalodon有什么优势
Zachary AI
AIGC调研相关AIGCtransformer架构
Megalodon作为一种新架构,其优势主要体现在以下几个方面:无限上下文处理能力:Megalodon能够处理无限上下文,这一点在多个证据中得到了强调[1][2][3]。这意味着它能够在处理长文本时保持高效和准确,而不会因为上下文长度的限制而降低性能。高性能:在2万亿token的训练任务中,Megalodon的性能超越了Llama2-7B,实现了非凡的效率[1][2][3]。这表明Megalodo
- 大模型系列——长度外推
confiself
深度学习
1.长度外推存在的问题1.长度外推存在不能识别的2.长度外推存在熵变问题3.长度内插入存在缩小距离分布2.直接使用外推技巧1.窗口局部关注+最终输出全局注意2.熵变+✖系数3.keynorm,增加模型识别距离能力4.增加bias,类似于SandwichTransformer升级之路:16、“复盘”长度外推技术
- RoPE:相对位置编码的旋转革命——原理、演进与大模型应用全景
大千AI助手
人工智能Python#OTHER人工智能深度学习大模型算法RoPE位置编码相对位置
“以复数旋转解锁位置关系的本质表达,让Transformer突破长度藩篱”旋转位置编码(RotaryPositionEmbedding,RoPE)是由JianlinSu等研究者于2021年提出的突破性位置编码方法,通过复数空间中的旋转操作将相对位置信息融入Transformer的自注意力机制,解决了传统位置编码在长序列建模中的外推瓶颈。该方法是当前主流大模型(如LLaMA、GPT-NeoX)的核心
- 浅谈生成式AI语言模型的现状与展望
摘要生成式人工智能语言模型作为当前人工智能领域最具突破性的技术之一,正在深刻改变着自然语言处理的技术范式和应用格局。本文从学术文献综述的角度,系统梳理了从Transformer架构到大语言模型的技术演进历程,深入分析了当前生成式AI语言模型的核心技术特征、应用现状以及面临的主要挑战,并展望了未来发展趋势。研究表明,生成式AI语言模型在参数规模扩展、多模态融合、推理能力提升等方面取得了显著进展,但仍
- Transformer:颠覆NLP的自注意力革命
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythontransformer自然语言处理深度学习
Transformer:颠覆NLP的自注意力革命Transformer是自然语言处理领域中极具影响力的深度学习模型架构,以下是对其的详细介绍:提出背景与应用:2017年,Vaswani等人在《AttentionIsAllYouNeed》论文中首次提出Transformer架构,它主要用于处理序列到序列的任务,如机器翻译、文本生成等。核心原理:文本生成的Transformer模型原理是“预测下一个词
- Pytorch实现细节解析:Transformer模型的Encoder与Decoder逐行代码讲解
lazycatlove
pytorchtransformer人工智能
文章目录摘要一、Transformer1.1为什么要使用attention1.2Transformer的优点二、Transformer模型Encoder和Decoder原理讲解与其Pytorch逐行实现2.1wordembedding2.2单词索引构成源句子和目标句子2.3构建positionembedding2.4构造encoder的self-attentionmask2.5构造intra-at
- Swin Transformer原理与代码精讲
bai666ai
深度学习之计算机视觉transformerswinCV深度学习图像分类
课程链接:SwinTransformer原理与代码精讲--计算机视觉视频教程-人工智能-CSDN程序员研修院Transformer在许多NLP(自然语言处理)任务中取得了最先进的成果。SwinTransformer是在ViT基础上发展而来,是Transformer应用于CV(计算机视觉)领域又一里程碑式的工作。它可以作为通用的骨干网络,用于图片分类的CV任务,以及下游的CV任务,如目标检测、实例分
- Transformer Masked loss原理精讲及其PyTorch逐行实现
MaskedLoss的核心原理是:在计算损失函数时,只考虑真实有意义的词元(token),而忽略掉为了数据对齐而填充的无意义的填充词元(paddingtoken)。这是重要的技术,可以确保模型专注于学习有意义的任务,并得到一个正确的性能评估。1.原理精讲为什么需要MaskedLoss?在训练神经网络时,我们通常会用一个批次(batch)的数据进行训练,而不是一次只用一个样本。对于自然语言处理任务,
- 深入探讨 Transformer 模型架构
年纪轻轻头已凉
transformer深度学习人工智能
```html深入探讨Transformer模型架构深入探讨Transformer模型架构Transformer是一种革命性的神经网络架构,由Vaswani等人在2017年提出,并在自然语言处理(NLP)领域取得了显著的成功。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖于自注意力机制(Self-AttentionMechanism),这使得它在处理长序
- LLM面试题详解:拿到大厂Offer
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythontransformer深度学习人工智能
LLM面试题核心架构与基本概念Token化包含哪些内容,为什么它对LLM至关重要?Token化是将文本分解为更小单元(如单词、词的一部分或字符)的过程。它对LLM至关重要,因为LLM处理的是token的数值版本,通过Token化,模型可以处理多种语言、稀有词汇,保持词汇表大小可管理,提高计算速度和模型有效性。注意力机制在Transformer模型中如何运作?注意力机制通过计算查询(query)、键
- Transformer模型Decoder原理精讲及其PyTorch逐行实现
老鱼说AI
transformerpytorch深度学习人工智能学习python
原理:Decoder的核心是一个自回归(Auto-regressive)的生成器。它的任务是在给定源序列的编码表示(encoder_outputs)和已生成的目标序列部分(y_1,...,y_{t-1})的条件下,预测出下一个词y_t的概率分布。一个标准的DecoderLayer包含三个核心子层:1.带掩码的多头自注意力(MaskedMulti-HeadSelf-Attention):用于处理已生
- Python实现基于BO-CNN-LSTM-Mutilhead-Attention贝叶斯优化算法(BO)优化卷积长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例(含模型描述及示例代
nantangyuxi
Python含模型描述及示例代码算法神经网络python人工智能大数据深度学习机器学习
目录Python实现基于BO-CNN-LSTM-Mutilhead-Attention贝叶斯优化算法(BO)优化卷积长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例...2项目背景介绍...2项目目标与意义...3高效的模型优化...3深度特征提取...3序列数据的时序建模...3
- Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码matlab神经网络集成学习人工智能大数据深度学习机器学习
目录Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测的详细项目实例2项目背景介绍...2项目目标与意义...21.提高时序数据预测准确性...22.弱学习器组合的优势...33.提高数据预测的泛化能力...3
- 大模型训练全攻略:从数据到部署,小白也能看懂的技术手册
最近总有人问:“我也想训练一个自己的大模型,该从哪儿下手?”其实大模型训练就像盖房子——得先备料(数据)、搭骨架(架构)、按图纸施工(训练),最后还要验收(评估)和维护(监控)。今天就用“工程思维”拆解全流程,从基础概念到平台工具,从参数配置到避坑指南,一文讲透。先了解一下基础的概念一、LLM的基本原理LLM的底层逻辑依赖于一个叫Transformer的神经网络架构(2017年由Google提出)
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,