- Java高并发解决方案:线程池ThreadPoolExecutor详解
AI应用架构探索者
AI人工智能与大数据应用开发AI实战javapython开发语言ai
Java高并发解决方案:线程池ThreadPoolExecutor详解关键词:Java高并发、线程池、ThreadPoolExecutor、阻塞队列、拒绝策略、线程复用、任务调度摘要:在Java高并发场景中,线程池是解决线程频繁创建/销毁、资源浪费和线程管理混乱的“瑞士军刀”。本文将以“餐厅服务团队”为类比,用小学生都能听懂的语言,从线程池的核心参数、工作流程、实战配置到调优技巧,全面解析Thre
- 《FreeRTOS 入门与实战》第30章:课程总结与优化指南
ARM架构
嵌入式系统架构单片机嵌入式硬件数据库mongodbrisc-v
目录1.FreeRTOS10大常见问题1.1任务堆栈溢出1.2内存分配失败1.3优先级配置错误1.4中断延迟过高1.5任务调度器未启动1.6队列阻塞异常1.7看门狗触发1.8低功耗模式异常1.9移植兼容性问题1.10调试信息不足2.进一步学习路线2.1AmazonFreeRTOS核心特性学习资源移植要点2.2ESP-IDFFreeRTOS增强功能开发建议典型应用1.FreeRTOS10大常见问题1
- Hadoop中MapReduce和Yarn相关内容详解
接上一章写的HDFS说,Hadoop是一个适合海量数据的分布式存储和分布式计算的一个平台,上一章介绍了分布式存储,这一章介绍一下分布式计算——MapReduce。一、MapReduce设计理念map——>映射Reduce——>归纳mapreduce是一种必须构建在hadoop之上的大数据离线计算框架。因为mapreduce是给予磁盘IO来计算存储文件的,所以它具有一定的延时性,因此一般用来处理离线
- 一文说清楚Hive
Hive作为ApacheHadoop生态的核心数据仓库工具,其设计初衷是为熟悉SQL的用户提供大规模数据离线处理能力。以下从底层计算框架、优点、场景、注意事项及实践案例五个维度展开说明。一、Hive底层分布式计算框架对比Hive本身不直接执行计算,而是将HQL转换为底层计算引擎的任务。目前支持的主流引擎及其特点如下:计算引擎核心原理优点缺点适用场景MapReduce基于“Map→Shuffle→R
- python之APScheduler
༒࿈十三༙྇࿈༒
pythonpythonlinux前端
APScheduler是一个用于Python的高级任务调度库,可以在任何Python环境中使用。它提供了各种灵活的方式来定义和执行定时任务,支持多种调度方式,包括固定时间间隔、固定日期时间、CRON表达式等。首先,需要使用pip安装APScheduler库:pipinstallapscheduler下面是一个使用APScheduler的简单示例:fromapscheduler.schedulers
- python使用APScheduler进行定时任务,任务调度
sssugarr
python
介绍APScheduler(AdvancedPythonScheduler)是一个非常强大的调度库,它允许我们在特定的时间间隔、特定的时间点或特定的日期执行任务。它支持多种调度器,例如基于日期、时间间隔和Cron表达式的调度。安装首先,我们需要安装APScheduler。可以使用以下命令通过pip进行安装:pipinstallapscheduler基本用法APScheduler的主要组件包括:触发
- 【Python高阶开发】2. Dask分布式加速实战:TB级生产日志分析效率提升指南
摘要:随着工业4.0的深入推进,工业生产日志数据量呈指数级增长,某汽车制造厂日均产生2TB生产日志,传统单机Pandas处理面临内存不足、耗时过长、资源利用率低三大瓶颈。本文基于Dask分布式计算框架,构建工业级日志分析解决方案,通过“集群部署-高效加载-数据处理-性能优化”四步法,实现日志分析效率5倍提升。详细阐述Dask核心原理(任务调度、延迟计算、数据分区),对比单机与分布式架构差异,提供从
- FreeRTOS中断管理STM32
得单片机的运
单片机嵌入式硬件stm32物联网FreeRTOS
STM32中由NVIC高四位[7:4]来配置,最多可以表示16个中断优先级,分抢占优先级(在中断嵌套时高可以抢低的)和响应优先级,分0~4组,组0表示没有抢占优先级而响应优先级占4位,则由0~15个响应优先级,组1~4同理,普遍情况下都是全部用抢占优先级FreeRTOS的任务调度优先级相反,是数值越大越优先。其将PendSV和SysTick设置为最低中断优先级(15),保证任务切换不会阻断其他中断
- 分布式任务调度实战:XXL-JOB与Elastic-Job深度解析
告别传统定时任务的局限,拥抱分布式调度的强大与灵活在现代分布式系统中,高效可靠的任务调度已成为系统架构的核心需求。面对传统方案(如Timer、Quartz)在分布式环境下的不足,开发者急需支持集群调度、故障转移和可视化管理的解决方案。本文将深入剖析两大主流框架——XXL-JOB和Elastic-Job,从原理到实战,助你构建高可用的分布式调度系统。一、分布式任务调度:为什么需要它?在分布式架构中,
- 数据科学与大数据技术专业的核心课程体系及发展路径全解析
YangYang9YangYan
大数据
CDA数据分析师证书含金量高,适应了未来数字化经济和AI发展趋势,难度不高,行业认可度高,对于找工作很有帮助。一、课程体系三维地图二、核心课程能力矩阵课程模块关键技能行业应用场景工具链分布式计算Spark调优用户行为日志分析AWSEMR/Databricks数据挖掘特征工程金融反欺诈模型Scikit-learn实时数据处理Flink窗口计算物联网设备监控Kafka+Flink数据治理元数据管理企业
- 【软件系统架构】系列七:嵌入式系统性能深入解析
34号树洞
自学软件系统架构系统架构嵌入式系统软件系统架构软考
目录一、嵌入式系统性能定义二、嵌入式系统性能影响因素1.硬件平台2.操作系统(RTOSorBare-metal)3.任务与通信模型4.外设与通信接口5.功耗管理三、常用嵌入式性能测试指标与工具性能评估方法四、嵌入式系统性能瓶颈典型表现五、嵌入式性能优化策略1.硬件层优化2.软件层优化(1)实时性优化(2)任务调度优化(3)内存管理优化(4)功耗优化(5)数据吞吐优化3.系统级优化六、嵌入式性能测试
- 深入解析Hadoop资源隔离机制:Cgroups、容器限制与OOM Killer防御策略
码字的字节
hadoop布道师Hadoop资源隔离机制Cgroups容器限制OOMKiller
Hadoop资源隔离机制概述在分布式计算环境中,资源隔离是保障多任务并行执行稳定性的关键技术。Hadoop作为主流的大数据处理框架,其资源管理能力直接影响集群的吞吐量和任务成功率。随着YARN架构的引入,Hadoop实现了计算资源与存储资源的解耦,而资源隔离机制则成为YARN节点管理器(NodeManager)最核心的功能模块之一。资源隔离的必要性在共享集群环境中,典型问题表现为"资源侵占"现象:
- 华为OD机试 任务调度
梦想橡皮擦
本期题目:任务调度题目为了充分发挥GPU算力,需要尽可能多的将任务交给GPU执行,现在有一个任务数组,数组元素表示在这1s内新增的任务个数,且每秒都有新增任务。假设GPU最多一次执行n个任务,一次执行耗时1s,在保证GPU不空闲的情况下,最少需要多长时间执行完成。输入第一个参数为GPU最多执行的任务个数,取值范围1~10000;第二个参数为任务数组的长度,取值范围1~10000;第三个参数为任务数
- Jenkins 详解与实战:从安装到部署,打造你的自动化流水线
Ice__Cai
jenkins自动化运维
一、什么是Jenkins?Jenkins是一个开源的持续集成和持续交付(CI/CD)工具,广泛用于软件开发中的自动化构建、测试和部署流程。它支持数百个插件,几乎可以与所有技术栈无缝集成,是DevOps流程中不可或缺的一环。核心功能:功能描述持续集成(CI)自动化代码合并后的构建和测试流程持续交付/部署(CD)自动将代码部署到测试、预发布或生产环境任务调度支持定时任务、触发式任务(如Git提交后自动
- Linux 任务调度在进程管理中的关系和运行机制
嵌入式Jerry
内核+进程管理linuxredisjava
推荐阅读:《Yocto项目实战教程:高效定制嵌入式Linux系统》更多学习视频请关注B站:嵌入式JerryLinux任务调度在进程管理中的关系和运行机制Linux内核中的“任务调度”是进程管理系统的核心部分,相互关联而且分工明确。本文通过概念分析、模型分布、行为模式、调度策略、管理工具、代码示例和流程总结,全面讲解Linux任务调度在进程管理中的作用和机制。一、任务vs进程:基本概念分清概念含义进
- 利用中间件实现任务去重与分发精细化:股吧舆情数据采集与分析实战
亿牛云爬虫专家
python代理IP爬虫代理中间件股吧舆情数据采集数据分析爬虫代理代理IP
一、项目背景:为什么要精细化采集东财股吧?在股票市场中,情绪驱动效应越来越明显。散户投资者对个股的情绪变化,往往先于价格的异动,而东财股吧作为国内最活跃的财经论坛之一,承载了大量关于个股的观点、讨论和预判内容。这类内容虽然非结构化,却包含极高的信号密度,是舆情监测与热点追踪的重要来源。但在实际采集中,我们常常面临以下问题:大量关键词重复调度,资源浪费;分发逻辑混乱,任务调度粒度不够;数据反复采集,
- AI系统Spark原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI系统Spark原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Spark、大数据处理、分布式计算、机器学习、数据挖掘、实时流处理1.背景介绍1.1问题的由来在大数据时代,海量数据的高效处理和分析已成为各行各业的迫切需求。传统的数据处理方式难以应对数据量激增、数据类型多样化以及实时性要求高等挑战。为了解决这些问题,Ap
- 分布式任务调度xxl-Job
leese233
java
xxl-Job简介针对分布式任务调度的需求,市场上出现了很多的产品:1)TBSchedule:淘宝推出的一款非常优秀的高性能分布式调度框架,目前被应用于阿里、京东、支付宝、国美等很多互联网企业的流程调度系统中。但是已经多年未更新,文档缺失严重,缺少维护。2)XXL-Job:大众点评的分布式任务调度平台,是一个轻量级分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代
- UCOS-II 在单片机中的应用
woainizhongguo.
51/STM32单片机单片机嵌入式硬件stm32系统架构
引言在快速发展的嵌入式系统领域,实时操作系统(RTOS)的作用日益凸显,成为推动高效、可靠系统开发的关键组成部分。作为RTOS的杰出代表之一,μC/OS-II因其强大的功能和灵活的配置,已成为许多嵌入式项目的首选。不仅因为它能够提供丰富的多任务处理能力,还因为它在资源管理、任务调度和时间管理等方面的卓越性能。μC/OS-II是一款免费的、可裁剪的、抢占式的实时操作系统内核。它设计用于多任务环境,特
- Apache Ignite 的并发控制:实现高性能事务处理的关键
AI天才研究院
AI实战AI人工智能与大数据LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍随着大数据时代的到来,数据量的增长和计算能力的提升使得传统的数据库和计算模型已经无法满足业务需求。为了应对这些挑战,分布式计算和存储技术得到了广泛的研究和应用。ApacheIgnite是一款高性能的分布式数据库和计算平台,它可以提供实时性能和高可用性,同时支持事务处理和并发控制。在这篇文章中,我们将深入探讨ApacheIgnite的并发控制机制,以及如何实现高性能事务处理。我们将从以下
- DolphinScheduler 如何高效调度 AnalyticDB on Spark 作业?
DolphinScheduler社区
spark大数据分布式
DolphinScheduler是一个分布式易扩展的可视化DAG工作流任务调度开源系统,能高效地执行和管理大数据流程。用户可以在DolphinSchedulerWeb界面轻松创建、编辑和调度云原生数据仓库AnalyticDBMySQL版的Spark作业。前提条件AnalyticDBforMySQL集群的产品系列为企业版、基础版或湖仓版。AnalyticDBforMySQL集群中已创建Job型资源组
- 深入解析Hadoop中的推测执行:原理、算法与策略
码字的字节
hadoop布道师hadoop算法推测执行
Hadoop推测执行概述在分布式计算环境中,任务执行速度的不均衡是一个普遍存在的挑战。Hadoop作为主流的大数据处理框架,通过引入推测执行(SpeculativeExecution)机制有效缓解了这一问题。该技术本质上是一种乐观的容错策略,当系统检测到某些任务执行明显落后于预期进度时,会自动在其它计算节点上启动相同任务的冗余副本,最终选择最先完成的任务结果作为输出。核心设计动机推测执行的诞生源于
- spark on yarn
不辉放弃
pyspark大数据开发
SparkonYARN是指将Spark应用程序运行在HadoopYARN集群上,借助YARN的资源管理和调度能力来管理Spark的计算资源。这种模式能充分利用现有Hadoop集群资源,简化集群管理,是企业中常用的Spark部署方式。核心角色•Spark应用:包含Driver进程和Executor进程。Driver负责任务调度、逻辑处理;Executor负责执行具体任务并存储数据。•YARN组件:◦
- 数据标注管理工具:AI燃料工厂的精益引擎
花海如潮淹
人工智能经验分享笔记
标注团队的三重灾难链1.质量波动的死亡螺旋某自动驾驶公司因漏标3%的障碍物边缘,导致感知模型误判引发事故(IEEE2024案例)。质检员发现标注员A的错误率超行业标准5倍,但传统抽检仅覆盖8%数据量(ScaleAI白皮书)。2.任务调度的纳什困境某医疗影像标注项目,肝脏分割任务积压2周,而简单分类任务空闲率达37%(Labelbox调度报告)。标注员平均28%时间浪费在任务切换(Appen生产力研
- 深入解析Hadoop中的Region分裂与合并机制
码字的字节
hadoop布道师hadoop大数据分布式Region分裂合并
Hadoop与Region的基本概念Hadoop的分布式架构基础作为大数据处理的核心框架,Hadoop通过分布式存储和计算解决了海量数据的处理难题。其架构核心由HDFS(HadoopDistributedFileSystem)和MapReduce组成,前者负责数据的分布式存储,后者实现分布式计算。在HDFS中,数据被分割成固定大小的块(默认128MB)分散存储在集群节点上,而MapReduce则通
- freertos任务调度关键函数理解
dddddppppp123
c语言
voidxPortPendSVHandler(void){/*Thisisanakedfunction.*/__asmvolatile(//保存当前任务上下文"mrsr0,psp\n"//读取进程栈指针(PSP)到r0"isb\n"//指令同步屏障,确保前面的指令执行完毕"\n""ldrr3,pxCurrentTCBConst\n"/*GetthelocationofthecurrentTCB.*
- 大数据集群运维常见的一些问题以及处理方式
态);若为YARN节点,重启NodeManager后手动将其加入集群。若为节点整体宕机:排查电源和网络,重启节点后,依次启动HDFS、YARN等服务进程,确认数据块完整性(避免因节点宕机导致副本不足)。2.网络问题现象:节点间通信超时(如HDFS心跳超时、YARN任务调度延迟)、数据传输卡顿。可能原因:交换机故障、网线松动、网络带宽过载、防火墙规则拦截。处理方式:用ping、traceroute检
- 【华为OD机试真题 Python语言】132、任务调度 | 机试真题+思路参考+代码解析
KFickle
华为odpython华为华为OD机试真题任务调度
文章目录一、题目题目描述输入输出样例1二、思路参考三、代码参考作者:鲨鱼狼臧个人博客首页:鲨鱼狼臧专栏介绍:2024华为OD机试真题,使用Python进行解答,专栏每篇文章都包括真题,思路参考,代码分析,思路参考超过百字,欢迎大家订阅学习一、题目题目描述现有一个CPU和一些任务需要处理,已提前获知每个任务的任务ID、优先级、所需执行时间和到达时间。CPU同时只能运行一个任务,请编写一个[任务调度]
- 从“一人干多活”到“团队协作”:RTOS多任务调度,居然藏着这么多小聪明!
从“一人干多活”到“团队协作”:RTOS多任务调度,居然藏着这么多小聪明!你有没有过这种经历:一边炖着汤,一边炒着菜,还得时不时跑去看一眼烤箱里的面包,结果手忙脚乱打翻了盐罐?嵌入式系统处理任务时,也曾面临同样的“窘境”——裸机系统就像一个人包揽所有活,只能按顺序挨个做;而RTOS(实时操作系统)则像雇了个“智能调度员”,能让多个任务“轮流上岗”,甚至“紧急任务插队”,效率直接翻倍!今天咱们就从裸
- 数据结构排序算法总结(C语言实现)
xienda
排序算法数据结构算法
以下是常见排序算法的总结及C语言实现,包含时间复杂度、空间复杂度和稳定性分析:1.冒泡排序(BubbleSort)思想:重复比较相邻元素,将较大元素向后移动。时间复杂度:O(n²)(最好O(n),最坏O(n²))空间复杂度:O(1)稳定性:稳定voidbubbleSort(intarr[],intn){for(inti=0;iarr[j+1]){//交换相邻元素inttemp=arr[j];arr
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟