UVA 10254 - The Priest Mathematician (dp | 汉诺塔 | 找规律 | 大数)

本文出自   http://blog.csdn.net/shuangde800


题目点击打开链接


题意:

汉诺塔游戏请看 百度百科

正常的汉诺塔游戏是只有3个柱子,并且如果有n个圆盘,至少需要2^n-1步才能达到目标。

但是在这题中,有4根柱子,并且按照下面规则来玩:

1. 先把圆盘顶部前k个盘子全部搬到第四根柱子上,

2. 然后把剩下的n-k个盘子在前3根柱子中按照经典的规则搬到某个柱子上(假设是a柱),

3. 最后再把那k个盘子搬到目标a柱上。

问按照这样的规则,最少需要几步?


思路:

我们先设g[n]表示按照经典的游戏规则(3根柱子),n个盘子最少需要g[n]步,可以知道g[n] = 2^n-1

然后我们再设f[n]表示按照4根柱子的规则来,n个盘子最少需要f[n]步。

那么按照上面步骤可以推出:

1. 把圆盘顶部前k个盘子全部搬到第四根柱子 上 ==》 需要f[k]步

2. 把剩下的n-k个盘子在前3根柱子中按照经典的规则搬到某个柱子上 (假设是a柱) ==》需要g[n-k]步

3. 最后再把那k个盘子搬到目标a柱上 ==》需要f[k]步

所以,f[n] = f[k]*2+g[n-k]

因为f[n]要最小,且k不确定,所以枚举一下k,取最小值即可:

f[n]  =  min{ f[k]*2+g[n-k] , 1<=k<=n }


由于n过大,所以要用到大数。


由于本题的n为10000,上面的算法复杂度为O(n^2),所以不能用上面方法。


那么就打表找规律一下,并不难找


观察下面前20个,不难找出规律:

 

f[1] = 1

----------------

f[2] = 3,  f[2] = f[1] + 2^1

f[3] = 5,  f[3] = f[2] + 2^1

共 2 个 2^1

----------------

f[4] = 9,  f[4] = f[3] + 2^2

f[5] = 13,  f[5] = f[4] + 2^2

f[6] = 17,  f[6] = f[5] + 2^2

共 3 个 2^2

----------------

f[7] = 25,  f[7] = f[6] + 2^3

f[8] = 33,  f[8] = f[7] + 2^3

f[9] = 41,  f[9] = f[8] + 2^3

f[10] = 49,  f[10] = f[9] + 2^3

共 4 个 2^3

----------------

f[11] = 65,  f[11] = f[10] + 2^4

f[12] = 81,  f[12] = f[11] + 2^4

f[13] = 97,  f[13] = f[12] + 2^4

f[14] = 113,  f[14] = f[13] + 2^4

f[15] = 129,  f[15] = f[14] + 2^4

共 5 个 2^4

----------------

f[16] = 161,  f[16] = f[15] + 2^5

f[17] = 193,  f[17] = f[16] + 2^5

f[18] = 225,  f[18] = f[17] + 2^5

f[19] = 257,  f[19] = f[18] + 2^5

f[20] = 289,  f[20] = f[19] + 2^5

共 6 个 2^5

----------------


 

 

代码:

 

/**===========================================

 *  This is a solution for ACM/ICPC problem.

 *

 *  @author: shuangde

 *  @blog: http://blog.csdn.net/shuangde800 

 *  @email: [email protected]

 *============================================*/



import java.math.*;

import java.util.Scanner;



public class Main {

	public static void main(String args[]){

		

 	  	BigInteger f[] = new BigInteger[10010];

 	  	f[0] = BigInteger.valueOf(0);

		f[1] = BigInteger.valueOf(1);

		int i = 2;

		int k=1;

		while(i <= 10000){

			BigInteger add = BigInteger.valueOf(1).shiftLeft(k);

			for(int j=0; j<k+1 && i<=10000; ++j){

				f[i] = f[i-1].add(add);

				++i;

			}

			++k;

		}  

		Scanner cin = new Scanner(System.in);

		while(cin.hasNext()){

			int n = cin.nextInt();

			System.out.println(f[n]); 		

		}

	}

}


 





 

你可能感兴趣的:(Math)