二刷代码随想录算法训练营第二十三天 | 669. 修剪二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树

目录

一、669. 修剪二叉搜索树

二、108. 将有序数组转换为二叉搜索树

三、538. 把二叉搜索树转换为累加树

一、669. 修剪二叉搜索树

题目链接:力扣

文章讲解:代码随想录

视频讲解: 你修剪的方式不对,我来给你纠正一下!| LeetCode:669. 修剪二叉搜索树

题目:

给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。

所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。

代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    /*TreeNode* trimBST(TreeNode* root, int low, int high) {
        //没有很好的利用搜索树左小右大的特性
        if (!root) return root;
        root->left = trimBST(root->left, low, high);
        root->right = trimBST(root->right, low, high);
        if (root->val < low || root->val > high){
            if (!root->left) return root->right;
            else if (!root->right) return root->left;
            else{
                TreeNode* new_node = root->left;
                while(new_node->right) new_node = new_node->right;
                new_node->right = root->right;
                root = root->left;
            }
        }
        return root;


        //递归法
        if(!root) return NULL;
        if(root->val < low)     return trimBST(root->right, low, high);
        if(root->val > high)    return trimBST(root->left, low, high);
        root->left = trimBST(root->left, low, high);
        root->right = trimBST(root->right, low, high);
        return root;

    }*/

    
    //递归法
    TreeNode* trimBST(TreeNode* root, int low, int high) {
        if (!root) return nullptr;
        //将根节点移到合理范围内
        while (root && (root->val < low || root->val > high))
            if (root->val < low) root = root->right;
            else root = root->left;
        TreeNode *node = root;
        // 处理左子树,处理左子树的过程中,合理继续向左(node的右子树一定合理),不合理就向右(node的左子树一定不合理)
        if(!root) return NULL;
        for (;node->left;) 
            if(node->left->val < low) 
                node->left = node->left->right;
            else node = node->left;

        // 处理右子树,处理右子树的过程中,合理继续向右(node的左子树一定合理),不合理就向左(node的右子树一定不合理)
        for (node = root;node->right;)
            if (node->right->val > high)
                node->right = node->right->left;
            else node = node->right;

        return root;
    }
};

时间复杂度: O(n)                                        空间复杂度: O(1)

⏲:9:13

总结:1.考虑二叉搜索树特性,如果root结点不符合条件,那么左右子树有一个必不符合条件,另一个可能存在不符合条件的结点。

           2.不考虑特性,则要删除root结点,则需要参考二叉树删除结点的方法。

二、108. 将有序数组转换为二叉搜索树

题目链接:力扣

文章讲解:代码随想录

视频讲解:构造平衡二叉搜索树!| LeetCode:108.将有序数组转换为二叉搜索树

题目:给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。
高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。

代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* bulid(vector& nums, int begin, int end){
        if(begin > end) return NULL;
        int mid = ((end - begin)>>1) + begin;
        TreeNode* root = new TreeNode(nums[mid]);
        root->left = bulid(nums, begin, mid-1);
        root->right = bulid(nums, mid+1, end);
        return root;
    }
    TreeNode* sortedArrayToBST(vector& nums) {
        return bulid(nums, 0, nums.size()-1);
    }
};

时间复杂度: O(n)                                        空间复杂度: O(logn)

⏲:4:11

总结:1.根据数组构造二叉树,考虑分治来递归。二叉搜索树要求顺序,则左子树在root左边,右子树在root右边。平衡二叉树要求左右结点数相近,则root结点选取mid。

三、538. 把二叉搜索树转换为累加树

题目链接:力扣

文章讲解:代码随想录

视频讲解:普大喜奔!二叉树章节已全部更完啦!| LeetCode:538.把二叉搜索树转换为累加树

题目:给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。
提醒一下,二叉搜索树满足下列约束条件:
节点的左子树仅包含键 小于 节点键的节点。
节点的右子树仅包含键 大于 节点键的节点。
左右子树也必须是二叉搜索树。

代码:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* pre;
    TreeNode* convertBST(TreeNode* root) {
        if (!root) return NULL;
        convertBST(root->right);
        if (pre) root->val += pre->val;
        pre = root;
        convertBST(root->left);
        return root;
    }
};

时间复杂度: O(n)                                        空间复杂度O(n)

⏲:2:21

总结:1、观察知,所谓累计所有比自己大的结点的值在二叉搜索树(中序遍历可变为有序数组)中,可表现为自身的值加上上一个结点的值(已经累加过)即可。故采用反中序遍历即从大到小进行累加。

         2、迭代法可通过构造线索二叉树,将空间复杂度压缩为O(1)。

你可能感兴趣的:(算法,leetcode,数据结构)