- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- 强化学习入门三(SARSA)
第六五签
算法模型算法人工智能
SARSA算法详解SARSA是强化学习中另一种经典的时序差分(TD)学习算法,与Q-Learning同属无模型(model-free)算法,但在更新策略上有显著差异。SARSA的名称来源于其更新公式中涉及的五个元素:状态(State)、动作(Action)、奖励(Reward)、下一状态(NextState)、下一动作(NextAction),即(S,A,R,S’,A’)。SARSA与Q-Lear
- CIRL:因果启发的表征学习框架——从域泛化到奖励分解的因果革命
大千AI助手
人工智能Python#OTHER学习深度学习人工智能机器学习表征学习因果推断域泛化
CIRL(因果启发的表征学习)是由国内顶尖AI研究团队于CVPR2022提出的创新框架,最初用于解决域泛化(DomainGeneralization,DG)问题,其核心思想是通过结构因果模型(SCM)分离数据中的因果与非因果因素,构建鲁棒表征。后续研究(如GRD、Diaster算法)将其扩展至强化学习的奖励分解领域,通过因果充分性、稀疏性与正交性约束,解决延迟奖励与奖励黑客问题。原始论文发表于CV
- 踏上人工智能之旅(一)-----机器学习之knn算法
Sunhen_Qiletian
人工智能机器学习算法python
目录一、机器学习是什么(1)概述(2)三种类型1.监督学习(SupervisedLearning):2.无监督学习(UnsupervisedLearning):3.强化学习(ReinforcementLearning):二、KNN算法的基本原理:1.距离度量:2.K值的选择:3.投票机制和投票:三、Python实现KNN算法1.导入必要的库和数据:2.提取特征和标签:3.导入KNN分类器并训练模型
- 基于强化学习的工业SCR脱硝系统控制算法设计与实现
pk_xz123456
算法python人工智能python深度学习数据挖掘
基于强化学习的工业SCR脱硝系统控制算法设计与实现1.引言选择性催化还原(SCR)脱硝系统是火电厂等工业设施中用于降低氮氧化物(NOx)排放的关键环保设备。传统的PID控制方法在面对SCR系统非线性、大滞后等特性时往往表现不佳。本文将详细介绍如何利用强化学习技术设计智能控制器,实现SCR脱硝系统的优化控制。2.系统概述与问题分析2.1SCR脱硝系统工作原理SCR系统通过在催化剂作用下,向烟气中喷入
- 【无人机】基于强化学习的多无人机移动边缘计算与路径规划研究Matlab代码
Matlab科研工作室
无人机边缘计算matlab
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理
- AI人工智能领域深度学习的机器人控制技术
AI智能架构工坊
AI人工智能与大数据应用开发AI应用开发高级指南人工智能深度学习机器人ai
AI人工智能领域深度学习的机器人控制技术:让机器人像人类一样“聪明”行动关键词:深度学习、机器人控制、强化学习、端到端控制、具身智能摘要:本文将带您走进“深度学习+机器人控制”的奇妙世界。我们会用“教机器人端咖啡”这样的生活案例,从核心概念讲到底层原理,再通过实战代码演示如何用深度学习让机器人完成复杂任务。无论您是技术小白还是开发者,都能轻松理解深度学习如何赋予机器人“思考”和“适应”能力,以及未
- 第十四章、完全合作关系设定下的多智能体强化学习(MAC-A2C)
跳跳糖炒酸奶
强化学习算法强化学习人工智能python算法
0前言根据上一章的内容,已知完全合作关系下的多智能体利益一致有相同的目标,获得的奖励相同即Rt1=Rt2=Rt3R^1_t=R^2_t=R^3_tRt1=Rt2=Rt3。1完全合作关系设定下的策略学习要注意的点:状态S=[O1,O2,⋯ ,Om]S=[O^1,O^2,\cdots,O^m]S=[O1,O2,⋯,Om],所有智能体的观测之和是状态。动作A=[A1,A2,⋯ ,Am]A=[A^1,A^
- Kimi-Researcher 技术实现深度解析
李昕壑
人工智能
Kimi-Researcher是一款基于端到端自主强化学习技术构建的智能研究助手,其核心技术在于通过单一模型自主决策和执行复杂研究任务,无需预设工作流程。它具备轻量化的长时记忆机制和潜在的多模态处理能力,能够高效地进行并行搜索和灵活的工具调用,从而完成从信息搜集、分析到报告生成的全过程。1.Kimi-Researcher核心工作机制概述Kimi-Researcher作为一款专注于深度研究的Agen
- PPO:强化学习中的近端策略优化——原理、演进与大规模应用实践
大千AI助手
人工智能Python#OTHER人工智能深度学习大模型算法PPO近端策略优化优化
近端策略优化(ProximalPolicyOptimization,PPO)是由OpenAI团队于2017年提出的策略梯度强化学习算法,通过裁剪概率比目标函数约束策略更新幅度,解决了传统策略梯度方法训练不稳定、易发散的核心问题。该算法兼具信赖域策略优化(TRPO)的稳定性与一阶优化的简洁性,已成为深度强化学习(DRL)和大语言模型对齐(RLHF)的事实标准算法。本文由「大千AI助手」原创发布,专注
- 【强化学习】01
第一章:强化学习基础概念与核心要素的基石强化学习(ReinforcementLearning,RL)是一种机器学习范式,它关注智能体(Agent)如何在特定环境(Environment)中通过与环境的交互来学习如何做出决策,以最大化某种累积奖励。与监督学习和无监督学习不同,强化学习不依赖于预先标注好的数据集,而是通过“试错”的方式进行学习。1.1强化学习的独特学习范式在传统的机器学习领域,监督学习
- 大模型就业方向
有如下几个方向:基座模型训练工作内容:优化模型结构、数据比例,实现在各种任务上效果比较好的通用基座模型护城河:出了问题只有你能解决,给足情绪价值经验要求:必备:模型分布式框架(如deepspeed)、多机多卡训练、顶会的经验;阅读一系列LLM经典论文,例如Instruct-GPT、LORA等,从而对LLM有一个更深入、透彻的掌握。同任选:万卡集群的训练经验(包括预训练、sft、强化学习)、踩坑经验
- 使用 LLaMA 3 8B 微调一个 Reward Model:从入门到实践
茫茫人海一粒沙
Lorallama
本文将介绍如何基于Meta的LLaMA38B模型构建并微调一个RewardModel,它是构建RLHF(基于人类反馈的强化学习)系统中的关键一环。我们将使用HuggingFace的transformers、trl和peft等库,通过参数高效微调(LoRA)实现高质量RewardModel的训练。什么是RewardModel?RewardModel(RM)是RLHF流程中的评分器,它学习人类偏好:在
- 20250704-基于强化学习在云计算环境中的虚拟机资源调度研究
基于强化学习在云计算环境中的虚拟机资源调度研究随着云计算规模的持续扩大,数据中心虚拟机资源调度面临动态负载、异构资源适配及多目标优化等挑战。传统启发式算法在复杂场景下易陷入局部最优,而深度强化学习(DRL)凭借序贯决策能力为该问题提供了新路径。本研究以动态多目标组合优化理论为基础,结合CloudSimPy仿真框架与TensorFlow,构建“仿真-训练-验证”闭环调度系统,重点设计动态加权多目标奖
- LLM指纹底层技术——人类反馈强化学习
9命怪猫
AI深度学习机器学习人工智能大模型ai算法
以下简单讲一下“LLM指纹”体系中,负责精雕细琢模型“性格”与“价值观”的核心工艺——人类反馈强化学习(ReinforcementLearningfromHumanFeedback,RLHF)。预训练给模型注入了海量的知识(IQ),指令微调(SFT)教会了它基本的沟通技能(学会说话),RLHF对模型进行的一场深刻的“情商与价值观”教育。这个过程极大地塑造了模型的行为边界、风格偏好和安全意识,是形成
- Python强化学习实战:从游戏AI到工业控制的完整指南
全息架构师
AI行业应用实战先锋Python实战项目大揭秘python游戏人工智能
Python人工智能模型训练实战(六):强化学习从入门到工业级应用核心价值前情提要:我们已经完成了监督学习和AutoML的完整流程。本期将探索人工智能的另一个重要领域——让机器通过试错自主学习的强化学习技术!本期亮点:4大核心强化学习算法完整实现从游戏AI到工业控制的实战案例生产环境部署与性能优化技巧分布式强化学习系统架构完整的可运维代码实现强化学习算法对比(表格呈现)算法类型适用场景优势实现模块
- 强化学习在AI Agent资源调度中的应用
AI大模型应用实战
人工智能ai
强化学习在AIAgent资源调度中的应用关键词:强化学习、AIAgent、资源调度、马尔可夫决策过程、策略梯度算法摘要:本文聚焦于强化学习在AIAgent资源调度中的应用。首先介绍了强化学习和AIAgent资源调度的背景知识,明确了文章的目的、范围和预期读者。接着详细阐述了核心概念及其联系,包括强化学习和AIAgent资源调度的原理和架构,并通过Mermaid流程图进行直观展示。深入讲解了核心算法
- AI 驱动自动化运维平台架构与实现
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3算法机器学习人工智能决策树大数据
摘要:随着云计算、容器化和大规模分布式系统的普及,传统人工运维方法已难以满足现代IT环境中海量指标、日志和拓扑关系的实时分析与故障响应需求。AI驱动的自动化运维(AIOps)平台通过融合机器学习、深度学习、图分析以及强化学习等多学科技术,实现对海量运维数据的智能感知、预测、诊断和自动化修复。本文深入探讨AI驱动自动化运维平台的整体架构设计与核心技术实现,涵盖数据采集与预处理、AI引擎设计、自动化执
- 【Python】Gym 库:于开发和比较强化学习(Reinforcement Learning, RL)算法
彬彬侠
Python基础pythonGym强化学习RLGymnasium
Gym是Python中一个广泛使用的开源库,用于开发和比较强化学习(ReinforcementLearning,RL)算法。它最初由OpenAI开发,提供标准化的环境接口,允许开发者在各种任务(如游戏、机器人控制、模拟物理系统)中测试RL算法。Gym的设计简单且灵活,适合学术研究和工业应用。2022年,Gym被整合到Gymnasium(由FaramaFoundation维护)中,成为主流的强化学习
- 聚焦基础研究突破,北电数智联合复旦大学等团队提出“AI安全”DDPA方法入选ICML
CSDN资讯
人工智能安全数据要素大数据
近日,由北电数智首席科学家窦德景教授牵头,联合复旦大学和美国奥本大学等科研团队共同研发,提出一种DDPA(DynamicDelayedPoisoningAttack)新型对抗性攻击方法,为机器学习领域的安全研究提供新视角与工具,相关论文已被国际机器学习大会(ICML2025)收录。ICML由国际机器学习学会(IMLS)主办,聚焦深度学习、强化学习、自然语言处理等机器学习前沿方向,是机器学习与人工智
- 深度强化学习 | 图文详细推导深度确定性策略梯度DDPG算法
Mr.Winter`
机器人人工智能数据挖掘深度学习神经网络强化学习具身智能
目录0专栏介绍1演员-评论家架构1.1Critic网络优化1.2Actor网络优化2深度确定性策略梯度算法0专栏介绍本专栏以贝尔曼最优方程等数学原理为根基,结合PyTorch框架逐层拆解DRL的核心算法(如DQN、PPO、SAC)逻辑。针对机器人运动规划场景,深入探讨如何将DRL与路径规划、动态避障等任务结合,包含仿真环境搭建、状态空间设计、奖励函数工程化调优等技术细节,旨在帮助读者掌握深度强化学
- 深入解析部分可观测马尔可夫决策过程(POMDP)及其应用
码字的字节
算法人工智能马尔可夫决策过程POMDP
POMDP的基本概念与模型部分可观测马尔可夫决策过程(PartiallyObservableMarkovDecisionProcess,POMDP)是强化学习领域中处理不完全信息环境的核心数学模型。与完全可观测的马尔科夫决策过程(MDP)相比,POMDP更贴近现实世界中智能体面临的感知局限,其核心特征在于系统状态无法被直接观测,智能体必须通过间接的观测信号来推断潜在状态。POMDP的七元组模型PO
- 迈向大型推理模型:基于大型语言模型的强化推理综述(附教程)
LLM大模型
人工智能自然语言处理知识库本地化部署吴恩达大模型RAG
语言长期以来被认为是人类推理的基本工具。大型语言模型(LLM)的突破激发了大量研究兴趣,推动了利用这些模型解决复杂推理任务的探索。研究人员通过引入“思维”这一概念——即一系列代表推理过程中的中间步骤的标记——超越了简单的自回归标记生成。这一创新范式使LLMs能够模仿复杂的人类推理过程,如树搜索和反思性思维。近年来,学习推理的趋势逐渐兴起,强化学习(RL)被应用于训练LLMs掌握推理过程。这种方法通
- 强化学习 DAY1:什么是 RL、马尔科夫决策、贝尔曼方程
feifeikon
机器学习人工智能深度学习
第一部分RL基础:什么是RL与MRP、MDP1.1入门强化学习所需掌握的基本概念1.1.1什么是强化学习:依据策略执行动作-感知状态-得到奖励强化学习里面的概念、公式,相比ML/DL特别多,初学者刚学RL时,很容易被接连不断的概念、公式给绕晕,而且经常忘记概念与公式符号表达的一一对应。为此,学习RL的第一步就是一定要扎实关于RL的一些最基本的概念、公式(不要在扎实基础的阶段图快或图囵吞枣,不然后面
- 机器人-组成结构-感知 - 决策 - 执行
具身智能-查布嘎
具身智能机器人人工智能
目录一、感知系统内部传感器:外部传感器:二、智能决策系统机器学习家族1.1机器学习2.1深度学习2.2深度学习模型(主要属于监督/强化学习范畴,但结构通用):3.1监督学习3.2监督学习模型4.1半监督学习4.2无/半监督学习模型:5.1无监督学习5.2生成模型(可属于监督/无监督):6.1强化学习7.1其他学习三、控制系统(运控)①对应小脑和脊柱一、感知系统①对应人体的五官。由具有不同功能的各种
- GENERALIST REWARD MODELS: FOUND INSIDE LARGELANGUAGE MODELS
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习语言模型人工智能自然语言处理深度学习机器学习计算机视觉
GeneralistRewardModels:FoundInsideLargeLanguageModelshttps://arxiv.org/pdf/2506.232351.概述将大型语言模型(LLMs)与复杂的人类价值观(如乐于助人和诚实)对齐,仍然是人工智能发展中的一个核心挑战。这项任务的主要范式是来自人类反馈的强化学习(RLHF)[Christianoetal.,2017;Baietal.,
- [论文]基于强化学习的控制输入非线性水下机器人自适应神经网络控制
王莽v2
机器人神经网络神经网络算法控制器
[论文]基于强化学习的控制输入非线性水下机器人自适应神经网络控制摘要本文研究了在水平面内运动的全驱动自主水下机器人的轨迹跟踪问题。在我们的控制设计中考虑了外部干扰、控制输入非线性和模型不确定性。基于离散时间域的动力学模型,两个神经网络(包括一个临界神经网络和一个作用神经网络)被集成到我们的自适应控制设计中。引入临界神经网络来评价设计的控制器在当前时间步长内的长期性能,并利用作用神经网络来补偿未知动
- 【深度强化学习】MIP-DQN 实现案例(完整Python代码)
目录MIP-DQN算法概述建模基础训练阶段(Training)部署阶段(OnlineExecution)DNN网络转化为MIP表达式性能指标完整Python代码实现主函数:random_generator_battery模型函数:MIP_DQN基础/专用库包安装模型运行(完整Python代码)参数设置函数:Parameters参考本博客根据论文《Optimalenergysystemschedul
- Java 大视界 -- Java 大数据机器学习模型在金融市场情绪分析与投资策略制定中的应用
青云交
大数据新视界Java大视界java大数据机器学习情绪分析智能投资多源数据
Java大视界--Java大数据机器学习模型在金融市场情绪分析与投资策略制定中的应用)引言:正文:一、金融情绪数据的立体化采集与治理1.1多模态数据采集架构1.2数据治理与特征工程二、Java机器学习模型的工程化实践2.1情感分析模型的深度优化2.2强化学习驱动的动态投资策略三、顶级机构实战:Java系统的金融炼金术四、技术前沿:Java与金融科技的未来融合4.1量子机器学习集成4.2联邦学习在合
- 强化学习在成语接龙比赛中的应用
LucienCho
题目:裁判任意给出一个成语,比赛双方在有限的时间里轮流进行成语对答,要求:1.成语的首字要与上一个成语的尾字同声同调;2.当前比赛出现的所有成语不能再次出现;3.必须为四字成语分析:看到这个题目,笔者本能的想法是用现成代码跑一跑。但是在git上搜不到能赢得比赛的成语接龙代码,大多数代码只是实现了成语接龙的功能,随机找出符合规则的成语,不足以想赢得比赛,所以打算自己尝试。重新分析一遍规则吧!若不考虑
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin