- 基于深度学习的目标检测算法综述:从RCNN到YOLOv13,一文看懂十年演进!
人工智能教程
深度学习目标检测算法人工智能自动驾驶YOLO机器学习
一、引言:目标检测的十年巨变2012年AlexNet拉开深度学习序幕,2014年RCNN横空出世,目标检测从此进入“深度时代”。十年间,算法从两阶段到单阶段,从Anchor-base到Anchor-free,从CNN到Transformer,从2D到3D,从监督学习到自监督学习,迭代速度之快令人目不暇接。本文将系统梳理基于深度学习的目标检测算法,带你全面了解技术演进、核心思想、代表算法、工业落地与
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版)
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版))工业相机使用YoloV8模型实现不同水果的检测识别工业相机通过YoloV8模型实现不同水果的检测识别的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入Yo
- yolo 目标检测600类目标
大霸王龙
行业+领域+业务场景=定制YOLO目标检测人工智能
1.模型架构调整类别适配:将YOLO输出层的类别节点数调整为600(如YOLOv5的detect.yaml中修改nc=600),并更新类别名称映射表(classes.txt)。骨干网络优化:若使用YOLOv5/v8,可升级骨干网络(如C3模块深度)或替换为更高性能的主干(如EfficientNet、ResNet-101),以增强复杂场景的特征提取能力。多尺度检测头:保留或扩展YOLO的多尺度输出(
- yolo检测常见指标
bigdata从入门到放弃
深度学习yoloYOLO目标跟踪人工智能深度学习
YOLO(YouOnlyLookOnce)作为经典的单阶段目标检测算法,其性能评估依赖于目标检测领域的通用指标。这些指标既衡量检测精度(是否准确识别物体类别、准确定位),也衡量检测速度(是否实时)。下面用通俗的语言详细解释核心指标:一、基础:判断“预测框是否有效”——IoU(交并比)目标检测的核心是“预测框”(模型输出的矩形框)是否准确覆盖“真实框”(人工标注的物体位置)。IoU是衡量两者重叠程度
- 【YOLO系列】YOLOv1详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO人工智能目标检测计算机视觉
YOLOv1(YouOnlyLookOnce):实时目标检测的革命性突破✨motivation在目标检测领域,传统方法如R-CNN系列存在计算冗余、推理速度慢的问题。2016年提出的YOLO(YouOnlyLookOnce)首次实现端到端单阶段检测,将检测速度提升至45FPS(FasterR-CNN仅7FPS),彻底改变了实时目标检测的格局。其核心思想是将检测视为回归问题,实现"看一眼即知全貌"的
- 【三维目标检测】Complex-Yolov4详解(二):模型结构
Coding的叶子
Python三维点云实战宝典Complex-YoloComplex-Yolov4三维目标检测目标检测python
本文为博主原创文章,未经博主允许不得转载。本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。Complex-Yolo网络模型的核心思想是用鸟瞰图BEV替换Yolo网络输入的RGB图像。因此,在完成BEV处理之后,模型的训练和推理过程基本和Yolo完全一致。Yolov
- YOLOv4详细介绍
不是二哈的柯基
YOLO系列深度学习pdfYOLO计算机视觉
YOLOv4是一种目标检测算法,是YOLO(YouOnlyLookOnce)系列的最新版本,由AlexeyBochkovskiy、Chien-YaoWang和Hong-YuanMarkLiao共同提出。相比于之前的版本,YOLOv4在速度和精度方面都有了显著的提升。下面是YOLOv4的一些详细介绍:模型结构YOLOv4采用了一种新的模型结构,称为CSPDarknet。这个结构类似于ResNet的残
- YOLOV8模型及损失函数
山居秋暝LS
计算机视觉PythonYOLO
YOLOV8代码分析1.YOLOV8相对于YOLOV5的改进2模型2.1模型主要模块2.1.1模型主要模块:2.1.2CBS、SPPF、Bottleneck、C2f、model3损失ultralytics/models/yolo/detect/train.py3.2.1生成anchor_points3.3.1把targets[9,6]变为[bs,max_gt,1+4]3.4获取预测框Pboxes3
- YOLOv4 介绍及其模型优化方法
1、YOLOv4介绍2020年4月,YOLOv4在悄无声息中重磅发布,在目标检测领域引起广泛的讨论。在YOLO系列的原作者JosephRedmon宣布退出CV领域后,表明官方不再更新YOLOv3。但在过去的两年中,AlexeyAB继承了YOLO系列的思想和理念,在YOLOv3的基础上不断进行改进和开发,于今年4月发布YOLOv4,并得到了原作者JosephRedmon的承认。YOLOv4可以使用传
- 【YOLO系列】YOLOv4详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO目标跟踪人工智能目标检测计算机视觉论文阅读
YOLOv4详解:模型结构、损失函数、训练方法及代码实现motivationYOLO系列作者JosephRedmon与AlexeyBochkovskiy致力于解决目标检测领域的核心矛盾:精度与速度的平衡。YOLOv4的诞生源于两大需求:工业落地:在移动端/边缘设备实现实时检测(>30FPS)学术突破:无需昂贵算力(如1080Ti即可训练),在MSCOCO数据集达到SOTAmethods1.数据加载
- OpenCV基础02_图像预处理
白槿_cha
计算机视觉基础opencv人工智能计算机视觉笔记
图像预处理在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。OpenCV提供了许多图像预处理的函数和方法,一些常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学一、图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、垂
- 破解电梯场景难题:陌讯识别算法 mAP 达 98.7%
2501_92474790
算法计算机视觉目标检测智慧城市目标跟踪
开篇痛点:电梯间电动车识别的行业困局传统视觉算法在电梯间电动车检测场景中始终面临三重挑战:复杂光线环境下(如强光直射、夜间低照度)目标特征提取不稳定,电动车与婴儿车、行李箱等相似物体的误判率高达35%;电梯轿厢狭小空间导致目标畸变严重,小目标检测漏检率超过20%;普通模型在边缘设备部署时难以兼顾精度与速度,FPS普遍低于15帧[实测数据显示]。这些问题直接导致物业安防系统告警泛滥,真正的安全隐患却
- 夜间监控模糊不清?陌讯低光目标检测方案解读
2501_92474779
目标跟踪人工智能计算机视觉算法目标检测
开篇痛点:安防监控的检测困局在智慧城市建设浪潮下,安防监控面临核心矛盾:复杂场景中传统算法的泛化性短板日益凸显。某市级公安部门数据显示,夜间监控的误报率高达34%,雨雾天气下漏检率超40%。更严峻的是,密集人流场景中YOLOv5的ID丢失率达28%,实时预警几乎瘫痪——这恰是陌讯视觉算法v3.2的破局切入点。技术解析:三阶时空融合架构传统单帧检测在遮挡场景易失效,陌讯的创新在于时空联合建模:#陌讯
- 实时检测延迟超200ms?陌讯新框架FPS提速50%揭晓
2501_92474779
目标跟踪人工智能计算机视觉机器学习算法视觉检测
开篇痛点在现代安防监控场景中,实时目标检测(Real-timeObjectDetection)至关重要,但传统算法如FasterR-CNN或YOLOv5往往面临严峻挑战。实测数据显示:复杂环境下(如夜间低光照、人群密集区),漏检率(MissRate)高达15-20%,导致安全隐患;同时,检测延迟(Latency)常超过200ms,影响应急响应。例如,某城市交通监控系统报告,在雨雾天气中的车辆误报率
- 智慧零售 AI 卡顿?陌讯轻量化方案 FPS 升 40%
2501_92722744
零售人工智能目标跟踪计算机视觉目标检测算法
一、开篇痛点:智慧零售视觉算法的三大行业困境在智慧零售场景中,传统视觉算法正面临着难以突破的技术瓶颈。自助结算台的商品误识别率常高达12%-18%,导致消费者频繁触发人工核验;复杂货架场景下,商品重叠、光照变化和包装相似性问题,使得目标检测漏检率超过20%;而边缘设备的算力限制,又让实时推理帧率(FPS)普遍低于25,无法满足流畅交互需求[1]。这些问题直接造成商超运营成本增加30%以上,严重制约
- 工业检测漏检率高?陌讯多模态算法降损 40%
2501_92473287
算法目标检测人工智能机器学习计算机视觉
开篇:工业检测的“隐形损耗”难题在汽车零部件、电子制造等精密工业场景中,传统视觉检测系统正面临严峻挑战:复杂光照下金属表面缺陷漏检率超15%,多类瑕疵并存时算法误判率高达20%,生产线因人工复检导致的停机损失年均超百万[1]。某新能源电池厂商曾反馈,基于开源YOLOv5的检测方案在极耳缺陷检测中,因无法区分“褶皱”与“裂纹”,导致合格产品误判率达8%,直接造成每月30万元物料浪费。这些问题的核心在
- 漏检率骤升20%的安防困局:陌讯动态剪枝技术如何破局
2501_92473199
人工智能机器学习算法目标检测计算机视觉视觉检测
1.开篇痛点:安防监控的夜间困局传统目标检测算法在复杂安防场景中面临三重挑战:光照敏感:低光环境下行人检测mAP暴跌至65%以下,夜间误报率高达40%目标遮挡:密集场景(如校园周界)漏检率超25%,某园区因货柜遮挡漏检损失超万元/次算力瓶颈:边缘设备(如JetsonXavier)运行YOLOv5仅12FPS,响应延迟>200ms某安防厂商反馈:40%误报率迫使每2小时人工复核,运维成本激增37%2
- YOLOv5激活函数替换与模型变体实验实战教程
机 _ 长
YOLO极致优化实战YOLO深度学习算法
YOLOv5激活函数替换与模型变体实验实战教程本教程面向已具备YOLOv5训练经验的开发者,系统讲解如何在YOLOv5中替换激活函数、构建模型变体,并结合本项目实际文件和命令,突出实用性和可操作性。内容涵盖激活函数原理、替换方法、配置文件讲解、训练实操、源码解读、实验对比与常见问题排查。完整代码见文末1.激活函数原理简介激活函数是深度神经网络中非线性建模的关键组件。常见激活函数包括:ReLU:简单
- [毕业设计]一些基于yolov5项目高分毕业项目源码下载地址汇总
海神之光.
毕设课程设计YOLO
项目名称下载地址车辆检测计数+车牌定位+车牌识别的yolov4模板检测与yolov5车牌检测与LPRNet车牌检测源码+模型+详细说明.zip点我下载基于改进后的YOLOv5目标检测模型实现人群密度检测系统源码+模型+详细说明.zip点我下载基于YOLOv5实现微藻智能化在线检测系统源码+图片+说明文档.zip点我下载YOLOv5deepsort算法船舶等交通工具监测计数UI界面源码.zip点我下
- 基于YOLOv5+pyQT6的目标检测系统通用项目模板
本项目开发基于YOLOv5+pyQT6的目标检测项目,用来集成YOLO的目标检测系统,作为该类系统的开发模板,旨在通过替换模型文件即可进行照片、视频、摄像视频流的检测,设置日志系统,记录系统的每一步操作,并集成其他功能作为该模板的辅助功能。具体效果如下:yolo目标检测系统模板1.概述智能目标检测系统V2.1是一款基于PyQt6和YOLOv5模型开发的桌面应用程序。它提供了一个现代化、直观且功能丰
- 标签助手:基于LabelImg和YOLOv5的图像半自动标注工具
伏容一Julia
标签助手:基于LabelImg和YOLOv5的图像半自动标注工具项目基础介绍标签助手(labelGo-Yolov5AutoLabelImg)是一个图形化的半自动图像注解工具,它结合了广受欢迎的图像标注工具LabelImg的力量与先进的目标检测框架YOLOv5。这个开源项目旨在简化数据集的标注过程,利用现有YOLOv5PyTorch模型实现快速的半自动化标注,极大地提高了标注效率。项目主要采用Pyt
- YOLO13:基于超图增强自适应视觉感知的实时目标检测
alpszero
YOLO计算机视觉应用目标检测人工智能计算机视觉YOLO13
YOLO13:基于超图增强自适应视觉感知的实时目标检测论文:YOLOv13:Real-TimeObjectDetectionwithHypergraph-EnhancedAdaptiveVisualPerception代码:https://github.com/iMoonLab/yolov13YOLOv13主要技术YOLOv13新一代实时检测器,集卓越性能与效率于一身。YOLOv13系列包含四种变
- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- sahi+yolov8实现图像切片推理
文章目录前言一、SAHI介绍切片推理兼容性设计二、使用步骤图像切片推理与结果融合代码示例结果对比总结前言本文记录项目中涉及到了无人机正射图像的推理(通常8000像素*8000像素以上),由于模型推理尺寸是640*640的,如果直接整图送入模型推理,推理效果极差,可以考虑采用多个切片进行分别进行推理,最后合并推理结果的方式。一、SAHI介绍SAHI(SlicingAidedHyperInferenc
- yolov8seg如何获取每个结果的mask,不是一整个的mask
boss-dog
视觉算法开发yolov8rk3588
使用rk3588开发板对yolov8-seg进行推理时,瑞芯微官方代码中对推理的结果进行了封装,返回的分割结果是所有目标的mask,而不是单个目标的mask。yolov8seg怎么获得每个结果的mask,不是一整个的mask:https://github.com/airockchip/rknn_model_zoo/issues/175解决postprocess.h中关于检测结果的结构体解析type
- 博客摘录「 yolo 11从原理、创新点、训练到部署(yolov11代码+教程)」2025年4月28日
G.547
笔记
2.1新的Backbone设计YOLOv11引入了一个改进的Backbone网络架构,采用了CSPNet(CrossStagePartialNetwork)的升级版。CSPNet的引入使得YOLOv11在计算量相对较低的情况下能够更有效地提取深度特征,从而提高模型的表达能力。具体来说,CSPNet通过将特征图进行部分跨层连接,减少了冗余梯度信息,提高了模型的学习效率和泛化能力。2.2SPPF(Sp
- RK3568笔记九十三:基于RKNN Lite的YOLOv5目标检测
殷忆枫
RK3568学习笔记笔记YOLO
若该文为原创文章,转载请注明原文出处。一、介绍Yolov5是一种目标检测算法,属于单阶段目标检测方法,是在COCO数据集上预训练的物体检测架构和模型系列,它代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。最新的YOLOv5v7.0有YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x等,除了目标检测,
- 博客摘录「 适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)」2024年3月13日
激活虚拟环境使用condaactivate命令激活虚拟环境,激活成功的标志就是命令行前面的(base)换
- 博客摘录「 yolov8改进-添加Wise-IoU,soft-nms」2023年12月18日
Exodu
笔记
(1.0-iou[0])*iou[1].detach()iou*torch.exp((rho2/c2))
- 博客摘录「 Yolov8 源码解析(三十八)」2024年9月29日
starAI_2025
笔记
数列表格式defstore_track_info(self,track_id,box):"""存储跟踪数据。Args:track_id(int):对象的跟踪ID。box(list):对象边界框数据。Returns:(list):给定track_id的更新跟踪历史记录。"""#获取当前跟踪ID对应的历史跟踪数据track=self.trk_history[track_id]#计算边界框中心点坐标bb
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe