QA-GNN: 使用语言模型和知识图谱的推理问答

QA-GNN: 使用语言模型和知识图谱的推理问答_第1张图片

Abstract
使用预训练语言模型(LMs)和知识图谱(KGs)的知识回答问题的问题涉及两个挑战:在给定的问答上下文(问题和答案选择)中,方法需要(i)从大型知识图谱中识别相关的知识,并且(ii)在问答上下文和知识图谱上进行联合推理。在这项工作中,我们提出了一个新的模型,QA-GNN,通过两个关键创新解决了上述挑战:(i)相关性评分,我们使用LMs来估计相对于给定的问答上下文,KG节点的重要性,以及(ii)联合推理,我们将问答上下文和知识图谱连接起来形成一个联合图,并通过图神经网络相互更新它们的表示。我们在常识(CommonsenseQA,OpenBookQA)和生物医学(MedQA-USMLE)领域的问答基准上评估了我们的模型。QA-GNN胜过了现有的LM和LM+KG模型,并展现了执行可解释和结构化推理的能力,例如在问题中正确处理否定。

代码和数据可在https://github.com/michiyasunaga/qagnn 获取。

论文下载: 2104.06378.pdf (arxiv.org)icon-default.png?t=N7T8https://arxiv.org/pdf/2104.06378.pdf

1. 动机

目前现有的方法,对于QA上下文使用LM处理,对于KG使用GNN进行处理,并且并不相互更新彼此的表示,也不做语义的对齐表示。因此QA上下文与KG的分离表示可能会限制模型执行结构化推理的能力(比如处理否定问题)。因此本篇工作主要在于QA上下文与KG的融合表示。

2. 亮点

基于知识图谱的问答(KBQA)集中于知识图谱上的多跳推理以及语言模型与知识图谱的融合,目前的方法需要解决两个问题:

(1)在给定上下文的条件下,如何从规模巨大的知识图谱中检索出相关的知识。

(2)如何进行问答上下文与知识图谱的联合推理。

本文提出了一个新的模型:QA-GNN,通过两个关键性创新来尝试解决上述问题:

(1)相关性评分:在给定问答上下文的条件下,使用语言模型计算相关性评分,来估计知识图谱中的实体对于给定上下文的重要性。

(2)联合推理:将问答上下文与筛选出的知识图谱的子图构建一张联合图,使用基于GNN的消息传递来更新彼此的表示。

3. 模型方法

如图1所示,QA-GNN 的工作原理如下。首先,我们使用 LM 来获得 QA 上下文的表示,并从 KG 中检索子图  。然后我们引入一个表示 QA 上下文的 QA 上下文节点 z,并将 z 连接到主题实体  ,我们在两个知识来源上有一个联合图,我们称之为工作图  。为了自适应地捕获 QA 上下文节点与  中的每个其他节点之间的关系,我们使用 LM 计算每对的相关分数,并将该分数用作每个节点的附加特征。然后,我们提出了一个基于注意力的 GNN 模块,该模块在  上执行消息传递以进行多轮。我们使用 LM 表示、QA 上下文节点表示和池化工作图表示进行最终预测。

QA-GNN: 使用语言模型和知识图谱的推理问答_第2张图片

图1 总体架构图

(1)相关性评分

本文在给定问答上下文的条件下,使用语言模型计算相关性评分,估计知识图谱中的实体对于给定上下文的重要性。对中心实体附近few-hop的节点截为子图,对每一个entity与QA上下文做concat,然后使用预训练语言模型(本文使用的是RoBERTa),计算它们的相似程度。

对于每个节点 ,QA的上下文,节点的相关性评分为:

图片

(2)联合推理

本文中将问答上下文与筛选出的知识图谱的子图构建一张联合图,使用基于GNN的消息传递来更新彼此的表示。

QA-GNN: 使用语言模型和知识图谱的推理问答_第3张图片

图2 联合推理

该文章在CommonsenseQA以及OpenBookQA数据集上,进行了实验,实验表明,QA-GNN方法比fine-tune LM与现有的LM+KG方法分别提高了 5.7% 和 3.7% ,以及处理结构化推理(如否定问题)的能力,比目前的fine-tune LM有4.6%的提升。

4. 实验结果

本文的实验结果在官方排行榜上均取得了与其他系统竞争的结果。值得注意的是,前两个系统 T5 (Raffel et al., 2020) 和 UnifiedQA (Khashabi et al., 2020) 使用更多的数据进行训练,并且比本文的模型使用 8x 到 30 倍的参数(本文模型的参数为 ∼360M)。排除这些和集成系统,本文的模型在与其他系统的大小和数据量上具有可比性,并在两个数据集上实现了最佳性能。

表1 CommonsenseQA 官方排行榜上的测试准确性

QA-GNN: 使用语言模型和知识图谱的推理问答_第4张图片

表2 OpenBookQA 排行榜上的测试准确性

QA-GNN: 使用语言模型和知识图谱的推理问答_第5张图片

表3 CommonsenseQA IHdev上的消融实验

QA-GNN: 使用语言模型和知识图谱的推理问答_第6张图片

5. 总结

本文提出了QA-GNN,利用预训练语言模型与GNN融合QA上下文与KG。通过使用相关性评分,从知识图谱中检索实体相关子图,并衡量每个节点对于QA上下文的重要程度,这保证了在后续进行融合时,能够注意到这样的相关性信息。接着通过将QA上下文视作一个节点添加进KG,通过工作图连接两个信息源,并通过GNN消息传递联合更新它们的表示。本文是GNN在融合QA上下文与KG的一个尝试,在问答任务上相比现有的预训练语言模型、以及预训练+KG模型,都有不小的提升。同时,使用attention-base GNN,能够可视化知识图谱中节点之间的注意力关系,有助于提高QA可解释性和结构化推理的能力。

你可能感兴趣的:(大模型,人工智能)