Linux 网络传输学习笔记

这篇是混合《Linux性能优化实战》以及 《Wireshark网络分析就这么简单》的一些关于Linux 网络的学习概念和知识点笔记 ,主要记录网络传输流程以及对于TCP和UDP传输的一些影响因素

Linux 网络传输流程

借用一张倪朋飞先生的《Linux性能优化实战》课程中的图片

Linux 网络传输学习笔记_第1张图片

接收流程

  1. 网卡收到网络数据包,加入到收包队列
  2. 网卡将网络包写入DMA缓冲区,通知中断处理程序
  3. CPU硬中断锁定DMA缓冲区,将网络包拷贝到内核数据结构 sk_buff 缓冲区,清空并解锁当前DMA缓冲区
  4. 通知软中断,通知内核收到了新的网络帧,内核协议栈从缓冲区中取出网络帧
  5. 在链路层检查报文合法性,找出上层协议类型(ipv4/ipv6),去掉帧头,帧尾,交给网络层
  6. 网络层取出IP头,判断网络走向
    1. 本机的:取出上层协议(TCP/UDP),去掉IP头,交给传输层
    2. 非本机:转发
  7. 传输层取出TCP或者UDP头,根据 < 源 IP、源端口、目的 IP、目的端口 > 四元组作为标识,找出对应的 Socket,并把数据拷贝到 Socket 的接收缓存中
  8. 应用程序就可以使用 Socket 接口,读取到新接收到的数据

发送流程

  1. 应用程序通过调用 Socket API(比如 sendmsg,系统调用)发送网络包,这是一个系统调用,所以会陷入到内核态的套接字层中,套接字层会把数据包放到 Socket 发送缓冲区中
  2. 网络协议栈从 Socket 发送缓冲区中,取出数据包
  3. 传输层依据协议增加TCP或UDP头
  4. 网络层增加IP头,通过路由寻找下一条IP,并按照MTU大小分片
  5. 分片后的网络包再送到网络接口层,进行物理寻址,找下一条MAC地址,增加帧头和帧尾
  6. 软中断通知驱动程序,发包队列有新的网络帧需要发送
  7. 驱动通过DMA,从发送队列读取网络帧,并通过物理网卡发送出去

TCP的一些网络影响因素

一些小概念

接收窗口(Receiver Window)

接收窗口表示接收方TCP缓冲区可容纳的数据量。

发送方不能发送超过接收窗口大小的数据,以确保接收方有足够的时间处理数据。接收窗口大小由接收方TCP发送给发送方的窗口大小更新。

发送窗口(Sender Window)

发送窗口表示发送方TCP缓冲区可容纳的数据量。

接收方不能发送超过发送窗口大小的数据,以确保发送方有足够的时间发送数据。发送窗口大小由发送方TCP发送给接收方的窗口大小更新。

一般由接收方的接收窗口和发送方的发送窗口的较小值决定,另外网络的影响也会导致发送窗口变化

MSS 最大分段大小(Maximum Segment Size)

MSS表示TCP报文段的最大长度。

每个TCP连接都有一个MSS值,它取决于网络的最大传输单元(MTU)。发送方将数据分割为适当大小的报文段,以确保数据可以在TCP连接上可靠传输。

MTU 最大传输单元(Maximum Transmission Unit)

MTU表示网络中每个数据包的最大大小。

MTU值取决于所使用的网络和协议。在TCP/IP协议栈中,MTU通常等于接收窗口大小,以确保TCP数据可以在单个数据包中传输。

延迟确认

描述

在发送包时,接收方延迟确认,可以实现多个包一块确认,减少确认包的数量,减轻网络负担

缺点

  • 在丢包较多的情况下,会导致大量的超时重传,极大的影响网络性能,建议开启SACK提供重传效率
  • 接收窗口很小时,由于运输车很小,还要延迟确认,就会导致大量堆积,应该立即配送

过滤

wireshark 的过滤条件

tcp.analysis.ack_rtt >0.2 && tcp.len==0 获取超过200毫秒的确认包

Nagle算法

描述

在发送的数据还未被确认前,新的小包将会被收集,凑满一个MSS或者收到确认后发送

与延迟确认的区别

  1. Nagle算法没有明显的时间规律
  2. 凑满一个MSS或者收到确认后发送
  3. 如果是收到确认包立即发送,就可以判断是Nagle了

关于拥塞

  1. 刚开始建立连接时,拥塞窗口都设定的比较小
  2. 在慢启动阶段,拥塞会指数型增长,直到碰到临界窗口值
  3. 在临界窗口值往上,就会降低增长速度,避免触碰网络拥塞
  4. 碰到拥塞后,会有超时丢包现象,该阶段没有数据传输,称为超时重传时间(RTO)
  5. 超时重传后,会重新进入慢启动阶段,并调整临界值(所以超时重传极大影响网络性能)
    1. Richard Stevens:临界值设为上次发生拥塞的发送窗口的一半
    2. RFC5681 :发生拥塞时没被确认的数据量的一半,并不能小于2个MSS

超时重传

拥塞发生后,发送方发现发出去的包不像往常一样得到确认了,不过考虑收不到确认包可能是网络延迟导致,所以等待一段时间再判断,迟迟未收到就认定丢包了,只能重传,称为超时重传。

发出原始包到重传这个包的这段时间称为超时重传时间(RTO)。

快速重传

当发送方接受到3个或以上重复确认(Dup ACK)时,就意识到相应的包丢了,从而立即重传这些包

一些优化建议

  • 没有拥塞时,发送窗口越大,性能越好。所以在没有带宽限制的时候,应该尽量增大接收窗口
  • 如果经常发生拥塞,限制发送窗口能提高网络性能,因为重传对性能的影响极大
  • 超时重传对性能影响最大,因为有一段RTO重传时间没有任何数据传输,并且会将拥塞窗口设定为1MSS,所以要尽量避免超时重传
  • 快速重传对性能影响相对较小,因为没有等待时间,并且拥塞窗口减小幅度不大
  • SACK和NewReno有利于提高重传效率,提高传输效率
    • 早期TCP (丢包后面的包都重传,效率极低)
    • NewReno (接收方推理出丢掉的包,一个一个请求重传)
    • SACK (将目前接收到的包反馈给发送方,ACK提示丢掉的包)
      • 例如:SACK=9748-9912 ACK=8820 表示8820到9748之间的包未收到
  • 丢包对极小文件的影响比大文件严重,因为读写一个小文件的包数量很少,所以丢包可能也触发不到3个Dup ACK,只能等待超时重传,而大文件更容易触发快速重传

MTU 影响判定

1、如果是防火墙阻止会丢包,但是在三次握手时就会丢弃,而不是握手后访问丢弃

2、网络拥塞会丢包,但一段时间后会恢复

3、只丢大包不丢小包,可能是MTU导致的,特别是1460字节的临界值时

4、ping serverip -l 1472 -f 可以测试MTU是否是1500字节

如果报错说被丢弃,可能链路上存在较小的MTU,考虑调整MTU


关于UDP

1、UDP不管双方的MTU大小,发送方负责分片,接收方负责将分片组装,会消耗资源和影响性能

2、UDP没有重传机制,丢包由应用层处理,丢了就要全部重传,而TCP仅需重传丢的包

3、分片机制不安全,容易被攻击,如果分片的每个包都有More fragment的flag,1表示还有分片,0表示没有;所以,如果被大量发送flag为1的UDP包,就可能导致资源耗尽


LSO(Large Segment Offload 大量传输减负)

描述

为缓解CPU压力,把部分工作offload交给网卡处理

工作方式

TCP层将大于MSS的数据直接传给网卡,网卡负责分段处理

传统方式

TCP层根据MSS分段(CPU负责),再交给网卡处理

位置

Windows 的配置方式

网卡》属性》配置》高级》大量传输减负 

你可能感兴趣的:(知识系列,#,知识系列,Linux-基础知识,#,知识系列,计算机网络,linux,运维,网络)