- Swin Transformer原理与代码精讲
bai666ai
深度学习之计算机视觉transformerswinCV深度学习图像分类
课程链接:SwinTransformer原理与代码精讲--计算机视觉视频教程-人工智能-CSDN程序员研修院Transformer在许多NLP(自然语言处理)任务中取得了最先进的成果。SwinTransformer是在ViT基础上发展而来,是Transformer应用于CV(计算机视觉)领域又一里程碑式的工作。它可以作为通用的骨干网络,用于图片分类的CV任务,以及下游的CV任务,如目标检测、实例分
- (11)机器学习小白入门YOLOv:YOLOv8-cls epochs与数据量的关系
YOLOv8-clsepochs与数据量的关系(1)机器学习小白入门YOLOv:从概念到实践(2)机器学习小白入门YOLOv:从模块优化到工程部署(3)机器学习小白入门YOLOv:解锁图片分类新技能(4)机器学习小白入门YOLOv:图片标注实操手册(5)机器学习小白入门YOLOv:数据需求与图像不足应对策略(6)机器学习小白入门YOLOv:图片的数据预处理(7)机器学习小白入门YOLOv:模型训练
- Python 爬虫实战:Selenium 爬取豆瓣相册(图片分类 + 标签提取)
西攻城狮北
python爬虫selenium
一、引言豆瓣作为国内知名的社区平台,其相册功能允许用户上传和分享各类图片,涵盖电影海报、音乐专辑、生活记录等多个领域。这些图片数据对于了解用户兴趣、进行内容推荐和市场调研具有重要价值。然而,豆瓣对直接的数据访问设定了诸多限制,因此,本文将介绍如何通过Python爬虫技术结合Selenium自动化工具,合法高效地爬取豆瓣相册图片,并运用深度学习技术实现图片分类和标签提取。二、开发环境搭建(一)编程语
- 从0开始学习计算机视觉--Day04--线性分类
Chef_Chen
学习计算机视觉分类
从宏观来看,卷积网络可以看做是由一个个不同的神经网络组件组合而成,就像积木一样通过不同类型的组件搭建形成,其中线性分类器是一个很重要的组件,在很多卷积网络中都有用到,所以了解清楚它的工作原理对我们后续的学习会有很大的帮助。线性分类器是参数模型中最简单,最基础的例子,下面我们用输入图片输出图片分类的模型的例子来更进一步地了解它。首先,我们输入一张图片到模型中,输入后我们就会得到f(x,W),x指的是
- MSE做多分类任务如何
用「考试打分」来类比,秒懂为啥多分类任务很少用MSE,以及硬用会出啥问题~一、多分类任务的「常规操作」:交叉熵vsMSE1.多分类任务长啥样?例子:手写数字识别(0-9共10类)、动物图片分类(猫/狗/鸟等)。目标:模型输出每个类别的概率,选概率最高的作为预测结果。2.交叉熵为啥是「标配」?输出:配合softmax激活函数,输出每个类别的概率(和为1)。判卷逻辑:看「预测概率是否接近真实类别」,比
- 昇思MindSpore学习笔记6-02计算机视觉--ResNet50迁移学习
muren
学习笔记深度学习
摘要:记录MindSporeAI框架使用ResNet50迁移学习方法对ImageNet狼狗图片分类的过程、步骤。包括环境准备、下载数据集、数据集加载、构建模型、固定特征训练、训练评估和模型预测等。一、概念迁移学习的方法在大数据集上训练得到预训练模型初始化网络权重参数固定特征提取器应用于特定任务ImageNet数据集中的狼和狗图像进行分类。二、环境准备%%capturecaptured_output
- 读论文笔记-Flamingo:少样本视觉语言模型
joseanne_josie
论文阅读语言模型人工智能
读论文笔记-Flamingo:少样本视觉语言模型Plomblems本文拟解决多模态机器学习中,如何将训练好的模型快速适应到少量标注数据的新任务中的问题。Motivations已有的VLM虽然能在zero-shot的场景下适应于新任务,但他们只解决了有限的使用情况(如CLIP只解决了图片分类),由于主要缺乏生成语言的能力其不能应用于开放性任务。其他的一些方法虽然研究了基于视觉的语言生成但在数据量少的
- 目标检测原理简介
blanokvaffy
深度学习总结目标检测人工智能计算机视觉
目标检测是一类计算机视觉任务,简单来说,目标检测可被定义为在计算机中输入一张图像,计算机需要找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,如图一所示。目标检测是计算机视觉领域的核心问题之一,相较于最原始的将整张图片分类为某一类别,目标检测不光可以感知图像中物体的类别,还可以提取感兴趣物体在图像中的位置信息,并将图片区分为前景和背景。随着科技的进步,目标检测算法广泛的利用深度学习作为基础
- 深度学习---框架流程
MzKyle
深度学习深度学习人工智能
核心六步一、数据准备二、模型构建三、模型训练四、模型验证五、模型优化六、模型推理一、数据准备:深度学习的基石数据是模型的“燃料”,其质量直接决定模型上限。核心步骤包括:1.数据收集与标注来源:公开数据集(如ImageNet、MNIST)、网络爬取、传感器采集、人工标注(如图片分类标签、文本情感标注)。标注要求:标签准确性(避免噪声)、标注一致性(多人标注需校准)、标注完整性(覆盖所有目标类别)。数
- Python 爬虫实战:图片资源爬取与分类存储技巧
西攻城狮北
python爬虫实战案例图片
一、引言二、爬取图片资源(一)爬取网站选择(二)爬取流程(三)代码示例(四)代码解析三、图片分类存储(一)分类逻辑(二)代码示例(三)代码解析四、注意事项一、引言在互联网上,图片资源是信息的重要组成部分,如电商网站的商品图片、社交媒体的用户头像等。通过爬虫技术,我们可以有选择性地获取这些图片,并按照一定的规则进行分类存储。以下是一篇详细的学习文章,包含代码示例和注释,帮助你掌握图片资源爬取与分类存
- Python(7)Python通配符完全指南:从基础到高阶模式匹配实战(附场景化代码)
一个天蝎座 白勺 程序猿
python开发语言
目录一、通配符技术背景与核心价值二、Python通配符技术矩阵对比三、四大核心模块深度解析1.fnmatch精准模式匹配2.glob文件系统实战3.pathlib面向对象操作4.正则表达式增强版通配符四、六大工业级应用案例案例1:智能日志归档系统案例2:自动化图片分类器案例3:敏感文件检测系统五、性能优化与安全实践1.性能对比测试(10万次匹配)2.安全防护要点六、总结与扩展应用1.技术选型指南
- 计算机视觉深度学习入门(4)
yyc_audio
计算机视觉人工智能计算机视觉深度学习神经网络
在小型数据集上从头开始训练一个卷积神经网络利用少量数据来训练图像分类模型,这是一种很常见的情况。如果你从事与计算机视觉相关的职业,那么很可能会在实践中遇到这种情况。“少量”样本既可能是几百张图片,也可能是上万张图片。我们来看一个实例——猫狗图片分类,数据集包含5000张猫和狗的图片(2500张猫的图片,2500张狗的图片)。我们将2000张图片用于训练,1000张用于验证,2000张用于测试。将介
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- 图像分类项目 2.28
不要不开心了
人工智能机器学习数据挖掘python深度学习
今天的内容是图像分类项目一.图像分类将不同的图像,划分到不同的类别标签,实现最小的分类误差。图像分类的三层境界1.通用的多类别图像分类2.子类细粒度图像分类3.实例级图片分类二.图像分类评估指标TP(Truepositive,真正例):将正类预测为正类数。FP(Falsepositive,假正例):将反类预测为正类数。TN(Truenegative,真反例):将反类预测为反类数。FN(Falsen
- 2.28 图像分类全解析:从境界到评估,再到模型与样本处理
不要天天开心
机器学习算法人工智能
图像分类将不同的图像,划分到不同的类别标签,实现最小的分类误差。图像分类的三层境界:通用的多类别图像分类子类细粒度图像分类实例级图片分类图像分类评估指标之混淆矩阵:TP(Truepositive,真正例)——将正类预测为正类数。FP(Falsepostive,假正例)——将反类预测为正类数。TN(Truenegative,真反例)——将反类预测为反类数。FN(Falsenegative,假反例)—
- 视觉中的transformer:ViT
ch隔壁老张
深度学习笔记transformer深度学习计算机视觉
《》摘要transformer已经是NLP的标准。但是在cv领域用的很少,视觉里一般是和cnn一起用或者把某些conv替换成transformer(整体还是CNN)本篇文章证明纯的transformer直接在图片分类上也做得很好:在大量数据集上进行预训练的前提上,迁移到小数据集(作者说ImageNet是小数据集-_-)上也很好。Intro启发现在NLP里的transformer都是在大量数据集上进
- 快速使用transformers的pipeline实现各种深度学习任务
E寻数据
huggingface计算机视觉nlp深度学习人工智能pythonpipelinetransformers
目录引言安装情感分析文本生成文本摘要图片分类实例分割目标检测音频分类自动语音识别视觉问答文档问题回答图文描述引言在这篇中文博客中,我们将深入探讨使用transformers库中的pipeline()函数,它为预训练模型提供了一个简单且快速的推理方法。pipeline()函数支持多种任务,包括文本分类、文本生成、摘要生成、图像分类、图像分割、对象检测、音频分类、自动语音识别、视觉问题回答、文档问题回
- 23 注意力机制—BERT
Unknown To Known
动手学习深度学习bert人工智能深度学习
目录BERT预训练NLP里的迁移学习BERTBERT动机BERT预训练NLP里的迁移学习在计算机视觉中比较流行,将ImageNet或者更大的数据集上预训练好的模型应用到其他任务中,比如小数据的预测、图片分类或者是目标检测使用预训练好的模型(例如word2vec或语言模型)来抽取词、句子的特征做迁移学习的时候,一般不更新预训练好的模型在更换任务之后,还是需要构建新的网络来抓取新任务需要的信息使用预训
- Unet+ResNet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割人工智能计算机视觉
1.介绍传统的Unet网络,特征提取的backbone采用的是vgg模型,vgg的相关介绍和实战参考以前的博文:pytorch搭建VGG网络VGG的特征提取能力其实是不弱的,但网络较为臃肿,容易产生梯度消失或者梯度爆炸的问题。而Resnet可以解决这一问题,参考:ResNet训练CIFAR10数据集,并做图片分类本章在之前文章的基础上,只是将Unet的backbone进行替换,将vgg换成了res
- MySQL表设计的思考
昙花未现
多分类图片识别的项目背景,用户上传包含多个目录的压缩包形成数据集,压缩包中的子目录作为图片分类,机器学习根据用户选择的图片分类作为训练集和验证集,使用训练集进行模型训练,使用验证集进行模型验证,如果验证结果符合用户需求,用户可以发布模型,通过发布的模型来识别上传的图片。场景1:多分类图片识别的项目,图片验证集验证的结果是一个分类矩阵,矩阵中每个元素是该分类被预测成其他分类的图片数量。场景1设计:把
- 迁移学习实现图片分类任务
Cuteboom
迁移学习分类人工智能
导入工具包importtimeimportosimportnumpyasnpfromtqdmimporttqdmimporttorchimporttorchvisionimporttorch.nnasnnimporttorch.nn.functionalasFimportmatplotlib.pyplotasplt%matplotlibinline#忽略烦人的红色提示importwarningsw
- VLM 系列——Object Recognition as Next Token Prediction——论文解读
TigerZ*
AIGC算法AIGC计算机视觉深度学习人工智能transformer
一、概述1、是什么结合了CLIP的视觉编码器+语言模型Llama的部分参数,将常见的图片描述任务转变为只输出属性,换言之将图片分类转变为预测下一个文本输出token。这样就能够生成图片的topK属性(英文),用于开放域的图片Tag场景。2、亮点*对图像-标题(从原始标题中提取名词作为参考标签)对进行训练,比图像-问题-答案三元组更容易收集和注释。对于推理,生成文本片段作为标签而不是句子。*解码器具
- 基于深度学习的目标检测入门:Faster R-CNN,YOLO,SSD
Real_man
在学习深度学习的过程中,经常弹出不同的算法名称,同样是做目标检测的,每篇论文给出了不同的方式,这些算法之间到底有什么区别?目标检测算法有哪些?image.png图片分类给一张图片,预测这张图片中的对象是什么,就是图片分类。当我们创建了一个狗的分类器,拿一张狗的照片,然后预测照片的分类:image.png如果当狗和猫都出现在照片中呢?image.png我们的模型会预测出什么结果?我们可以训练一个多标
- Faster R-CNN原理
酸酸甜甜我最爱
基础理论学习cnn人工智能神经网络
R-CNN->FastR-CNN->FasterR-CNN一、R-CNN(RegionwithCNNfeature)R-CNN是利用深度学习进行目标检测的开山之作。RCNN算法流程可分为4个步骤:一张图像生成1K~2K个候选区域(使用SelectiveSearch算法);对每个候选区域,使用深度网络提取特征(这里的深度网络就是图片分类网络);特征送入每一类的SVM分类器,判别是否属于该类;使用回归
- 学习笔记-李沐动手学深度学习(二)(08-09、线性回归、优化算法、梯度下降、Softmax回归、损失函数、图片分类)
kgbkqLjm
李沐动手学深度学习算法回归学习
总结以_结尾的方法,好像是原位替换(即原地修改,就地修改变量)如fill_()感恩的心:(沐神的直播环境)08-线性回归+基础优化算法引言(如何在美国买房)根据现在行情预测房价线性回归(简化模型)、线性模型、神经网络b为偏差扩展到一般化线性模型每个箭头代表一个权重当层单层神经网络原因:不看输出层,将权重层和input放一起带权重的层只有一层【书中】衡量预估质量1/2是为了求导时把2消去线性回归(求
- 神经网络CNN优化处理图片
数据科学与艺术的贺公子
神经网络cnn人工智能
*构建一个图片分类模型,并没有涉及到图片预处理或美化的部分以下是一个简单的图片预处理的例子,它包括将图片转换为灰度图、调整大小并标准化到0-1之间:`importcv2fromtorchvisionimporttransforms定义预处理操作preprocess=transforms.Compose([transforms.Grayscale(),#将图像转换为灰度图(如果是彩色分类任务则不需要
- tensorflow画损失函数的代码_深度学习——Tensorflow学习(二)图片分类
weixin_39999532
将图片储存在dataset深度学习二分类损失函数深度学习对比两张图片的差异
在开始之前多说一句,本系列的教程均以Tensorflow官方为主,主要是考虑到有些同学英语不好的基础,而且Tensorflow官方的教材也较为简单,对很多基础性的问题没有涉及到,当然作者我也是一个半桶水,我想把我在学习过程中遇到的一些问题进行汇总,总的来说我觉得也可以理解这个学习教材可以称为笔记,之后在每一章我都会将Tensorflow官方教材的地址贴出来。今天要上代码了,直接实战出效果图片分类看
- 图片分类: 多类别
xiexiecn
分类数据挖掘人工智能
最近需要训练一个有200多类的图片分类网络,搜了一遍,发现居然没有很合适用的开源项目,于是自己简单撸了一个轮子,项目地址:https://github.com/xuduo35/imgcls_pytorch。支持如下backbone:alexnetresnet18,resnet34,resnet50,resnet101,resnet152,resnext101_32x4d,resnext101_64
- 图片格式介绍
jad_design
本文原创:huhongtao一、图片格式有哪些?BMP、JPEG、GIF、PSD、PNG、TIFF、TGA、EPS、SVG、webP、CDR、PCX、EXIF、FPX、PCD、DXF、UFO、AI、HDRI、RAW、WMF、FLIC、EMF、ICO二、图片分类图片分类.png1、矢量图矢量图:由数学向量来记录的图像是矢量图特点:放大后图片依旧清晰—放大后重新构图缺点:很难表现自然度高的写实图像格式
- 小程序样例2:简单图片分类查看
小田田_XOW
小程序开发小程序
基本功能:1、根据分类展示图片,点击类目切换图片:2、点击分类编辑,编辑分类显示:3、点击某个分类,控制主页该分类显示和不显示:类目2置灰后,主页不再显示4、点击分类跳转到具体的分类目录5、点击二级分类,预览图片源码实现主页index:获取类目数据,选择某个类目时,获取对应类目下的图片列表。因为有类目编辑,数据会发生变化,某个类目显示和隐藏后,主页要重新获取数据;index.js//index.j
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement