- 英伟达靠什么支撑起了4万亿?AI泡沫还能撑多久?
英伟达市值突破4万亿美元,既是AI算力需求爆发的直接体现,也暗含市场对未来的狂热预期。其支撑逻辑与潜在风险并存,而AI泡沫的可持续性则取决于技术、商业与地缘政治的复杂博弈。⚙️一、英伟达4万亿市值的核心支撑因素技术垄断与生态壁垒硬件优势:英伟达GPU在AI训练市场占有率超87%,H100芯片的FP16算力达1979TFLOPS,领先竞品3-5倍。CUDA生态:400万开发者构建的软件护城河,成为A
- PaddleOCR 快速开始
张欣-男
PaddlePaddlePaddleOCROCR
1.安装1.1安装PaddlePaddle#GPUcudapipinstallpaddlepaddle-gpu#CPUpipinstallpaddlepaddle1.2安装PaddleOCRwhl包pipinstallpaddleocr2.便捷使用2.1命令行使用2.1.1中英文模型检测+方向分类器+识别全流程:–use_angle_clstrue设置使用方向分类器识别180度旋转文字,–use_
- 非欧空间计算加速:图神经网络与微分几何计算的GPU优化(流形数据的内存布局优化策略)
九章云极AladdinEdu
空间计算神经网络人工智能gpu算力算法java开发语言
一、非欧空间计算的革命性意义与核心挑战在三维形状分析、社交网络建模、分子动力学模拟等领域,非欧几里得空间数据(流形数据)的处理正推动人工智能技术向更复杂的几何结构迈进。传统欧式空间优化方法在处理流形数据时面临根本性局限:黎曼度量导致距离计算失效、局部坐标系动态变化引发内存访问模式混乱、曲率变化影响并行计算效率。本文提出基于分块流形存储(BlockedManifoldStorage,BMS)与层次化
- 从零开始构建深度学习环境:基于Pytorch、CUDA与cuDNN的虚拟环境搭建与实践(适合初学者)
荣华富贵8
程序员的知识储备2程序员的知识储备3深度学习pytorch人工智能
摘要:深度学习正在引领人工智能技术的革新,而对于初学者来说,正确搭建深度学习环境是迈向AI研究与应用的第一步。本文将为读者提供一套详尽的教程,指导如何在本地环境中搭建Pytorch、CUDA与cuDNN,以及如何利用Anaconda和PyCharm进行高效开发。内容涵盖从环境配置、常见错误修正,到基础的深度学习模型构建及训练。我们旨在为深度学习零基础的入门者提供一个全面且易于理解的“保姆级”教程,
- LLaMA-Factory微调教程1:LLaMA-Factory安装及使用
Cachel wood
LLM和AIGCllamapython开发语言react.jsjavascript前端microsoft
文章目录环境搭建LLaMA-Factory安装教程模型大小选择环境搭建Windows系统RTX4060Ti(16G显存)python3.10cuda=12.6cudnntorch==2.7.1+cu126torchvision==0.22.1+cu126torchaudio==2.7.1+cu126PSC:\Users\18098>nvidia-smiTueJul2201:52:192025+<
- 核心板:嵌入式系统的核心驱动力
MYZR1
核心板人工智能SSD2351
核心板(CoreBoard)作为嵌入式系统开发的核心组件,已成为现代电子设备智能化的重要基石。这种高度集成的电路板将处理器、内存、存储和基本外设接口浓缩在一个紧凑的模块中,为各类智能设备提供强大的"大脑"。核心板的技术特点核心板通常采用先进的系统级封装(SiP)技术,在微小空间内集成了CPU/GPU、DDR内存、Flash存储以及电源管理单元。这种设计不仅大幅减小了体积,还提高了系统可靠性。以常见
- Unity_UI_NGUI_DrawCall
BuHuaX
Unityunityui游戏引擎c#游戏程序
Unity_UI五、NGUI进阶2.DrawCall相关2.1DrawCall的概念DrawCall定义:字面理解:DrawCall就是"绘制呼叫"的意思,表示CPU(中央处理器)通知GPU(图形处理器-显卡)开始渲染概念定义:DrawCall是CPU(处理器)准备好渲染数据(包括顶点、纹理、法线、Shader等等),然后告知GPU(图形处理器-显卡)开始渲染(将命令放入命令缓冲区)的命令简单来说
- 利用Gpu训练
兮℡檬,
深度学习人工智能
方法一:分别对网络模型,数据(输入,标注),损失函数调用.cuda()网络模型:iftorch.cuda.is_available():net=net.cuda()数据(训练和测试):iftorch.cuda.is_available():imgs=imgs.cuda()targets=targets.cuda()损失函数:iftorch.cuda.is_available():loss_fn=l
- Tensorflow-gpu运行时报错Non-OK-status: GpuLaunchKernel
GEM的左耳返
pythontensorflow深度学习python
Tensorflow-gpu运行时报错Non-OK-status:GpuLaunchKernel(FillPhiloxRandomKernelLaunch,num_blocks,block_size,0,d.stream(),gen,data,size,dist)status:Internal:invaliddevicefunctionFatalPythonerror:Aborted说明你安装的C
- PyTorch武侠演义 第一卷:初入江湖 第7章:矿洞中的计算禁制
空中湖
pytorch武侠演绎pytorch人工智能python
第一卷:初入江湖第7章:矿洞中的计算禁制矿洞深处罗盘残件在接近矿洞时突然发热,指针疯狂旋转。"就是这里,"欧阳长老抚摸着洞壁上的计算图刻痕,“TensorFlow帮用静态图封印了矿脉。”林小码看到:幽蓝矿脉构成巨大的计算图结构水晶矿簇随呼吸节奏明灭(CUDA核心)矿道中流淌着数据光流(内存带宽)"小心!"大师突然拉回林小码。他刚才踩中的矿砖下陷,触发岩壁上的机关——数十道计算图锁链从四面八方射来!
- 【科研绘图系列】R语言绘制边际云雨图散点图
生信学习者1
SCI科研绘图系列(2024版)r语言数据可视化
文章目录介绍加载R包数据下载导入数据数据预处理画图系统信息参考介绍【科研绘图系列】R语言绘制边际云雨图散点图加载R包library(tidyverse)library(ggplot2)library(ggpubr)library(ggpmisc)library(gghalves)library(aplot
- 研讨会预告:基于 NVIDIA Omniverse 构建 Physical AI 应用,解锁 Physical AI 的落地路径
CSDN资讯
人工智能
在生成式AI持续革新虚拟内容生产的同时,一种面向现实世界的AI正悄然兴起——物理AI(PhysicalAI)。它赋能机器人、自动驾驶等自主系统在三维空间中完成感知、理解与互动,让AI走出屏幕,触碰现实。借助NVIDIAOmniverse、Cosmos、IsaacSim等平台,开发者正在加速构建真实可用的物理智能体。加入本期精讲堂,探索如何利用端到端工具链快速推进AI与物理世界的深度融合。基于NVI
- 路口实时检测 30FPS+:陌讯抗遮挡算法实测
2501_92488070
算法计算机视觉视觉检测边缘计算智慧城市
开篇痛点:复杂路口的视觉识别困境在城市交通治理中,行人闯红灯行为检测一直是智能监控的难点。传统视觉算法在实际部署中常面临三重挑战:强光/逆光环境下目标特征丢失导致的漏检率超20%;行人与非机动车遮挡场景下误判率高达15%;普通GPU设备上难以维持25FPS以上的实时性[3]。某二线城市交管部门曾反馈,基于开源模型的系统每月产生超3000条无效告警,严重消耗人力核查资源。这些问题的核心在于传统单模态
- 如何解决 undetected_chromedriver 启动慢问题
小马哥编程
chromeseleniumui
要解决undetected_chromedriver启动慢的问题,可以从以下几个方面优化配置和代码:1.指定本地Chrome二进制路径避免自动搜索Chrome路径,直接指定位置:driver=uc.Chrome(browser_executable_path=r'C:\ProgramFiles\Google\Chrome\Application\chrome.exe')2.禁用GPU和沙盒(关键优
- 数字人克隆中SyncTalk算法介绍与部署过程
优秘智能UMI
人工智能ubuntu
SyncTalk算法介绍SyncTalk合成同步的头部说话视频,采用三平面哈希表示来保持主体身份。它可以生成同步的嘴唇动作、面部表情和稳定的头部姿势,并恢复头发细节以创建高分辨率视频。部署在Linux中部署该项目,在Ubuntu18.04、Pytorch1.12.1和CUDA11.3上测试。gitclonehttps://github.com/ZiqiaoPeng/SyncTalk.gitcdSy
- vLLM专题(三)-快速开始
AI专题精讲
大模型专题系列人工智能
本指南将帮助您快速开始使用vLLM执行:离线批量推理使用OpenAI兼容服务器进行在线服务1.先决条件操作系统:LinuxPython:3.9–3.122.安装如果您使用的是NVIDIAGPU,您可以直接使用pip安装vLLM。建议使用uv,一个非常快速的Python环境管理器,来创建和管理Python环境。请按照文档安装uv。安装uv后,您可以创建一个新的Python环境,并使用以下命令安装vL
- XCZU4EV-1FBVB900E Xilinx FPGA AMD Zynq UltraScale+ MPSoC EV(Embedded Vision)
XINVRY-FPGA
arm开发fpga开发fpga嵌入式硬件硬件工程计算机视觉硬件架构
XCZU4EV-1FBVB900EXCZU4EV‑2FBVB900E属于AMD(Xilinx)ZynqUltraScale+MPSoCEV(EmbeddedVision)系列,集成四核Arm®Cortex‑A53应用处理器、双核Cortex‑R5F实时处理器与Mali‑400MP2片上GPU,辅以强大的可编程逻辑和海量DSP引擎。该器件面向视频嵌入式视觉、网络通信、工业自动化和高级数据处理等对图形
- 数字经济时代全产业链详解
数字经济全产业链概述数字经济全产业链涵盖从底层技术到终端应用的完整生态,包括基础技术层、核心产业层、融合应用层和支撑服务层。以下是详细拆解:基础技术层1.硬件基础设施芯片与半导体:CPU、GPU、AI芯片(如NPU)等,支撑算力需求。通信设备:5G基站、光纤网络、卫星互联网等。数据中心:云计算服务器、边缘计算节点、绿色数据中心(如液冷技术)。2.软件与平台操作系统:鸿蒙、Windows、Linux
- 【MMCV】MMCV安装与踩坑
Elendill
Pyhtonpytorchpythonmmcv
确认MMCV版本首先确认项目所需MMCV的版本是多少mmcv2.0版本的代码相比较于=2.0.0安装方法新创建一个conda环境安装pytorch:condainstallpytorchtorchvisiontorchaudiopytorch-cuda=11.8-cpytorch-cnvidia安装mim,这是openmm官方推出的用于安装他们旗下mm系列产品的安装器:pipinstall-Uop
- [mmcv系列] pip安装mmcv记录
文章目录1.查看torch和cuda版本1.安装1.1从预编译包安装1.2源码编译安装2.校验报错:frommmcvimportConfig可以直接参考教程:找到pip安装,选择自己的cuda和torch版本,复制指令到终端安装即可:1.查看torch和cuda版本终端运行指令:python-c'importtorch;print(torch.__version__);print(torch.ve
- 【代码问题】【包安装】MMCV
Catching Star
python
可以参考这篇博客【MMCV】MMCV安装与踩坑-CSDN博客MMCV对于版本要求非常严格。python最好是3.10或者3.9,而且torch和cuda版本一定要对应。比如我是cu118,就可以这样安装:#举例:torch2.1.0+cu118pipinstallmmcv-full==1.7.2\-fhttps://download.openmmlab.com/mmcv/dist/cu118/to
- 存算一体架构或成为AI处理器技术发展关键
神州问学
人工智能架构gpu算力算法语言模型
©作者|坚果来源|神州问学引言马斯克巨资60亿美元打造的“超级算力工场”,通过串联10万块顶级NVIDIAH100GPU,不仅震撼了AI和半导体行业,促使英伟达股价应声上涨6%,还强烈暗示了AI大模型及芯片需求的急剧膨胀。这一行动不仅是马斯克对AI未来的大胆押注,也成为了全球企业加速布局AI芯片领域的催化剂,预示着一场科技革新竞赛的全面升级,各方竞相提升算力,争夺AI时代的战略高地。观察近期Bla
- 下一代AI芯片设计的五大革命性突破:从架构创新到能效比跃迁——解析存算一体、Chiplet与光子计算的产业实践
像素笔记
杂谈单片机人工智能gpu算力Chiplet硬件架构
一、引言:AI算力竞赛进入“纳米级战争”2024年,全球AI芯片市场规模突破800亿美元,但传统冯·诺依曼架构的“内存墙”问题愈发凸显。英伟达H100GPU的算力虽达4PetaFLOPS,但其实际能效比仅有15%,大量功耗消耗在数据搬运而非计算本身(数据来源:ISSCC2024报告)。与此同时,特斯拉Dojo超算通过定制化架构,将训练成本降低至行业平均水平的1/5。本文将深入剖析AI芯片设计的五大
- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- 使用vllm创建相同模型的多个实例,使用nginx进行负载均衡,提高模型吞吐量
背景要提高vllm部署的大模型吞吐量,可以从显存利用率优化、多实例部署、参数调优和流程优化等多个维度入手,以下是具体建议:一、提高gpu-memory-utilization的效果与操作gpu-memory-utilization控制vllm预分配的GPU内存比例(默认0.9),当前值0.35预留了过多显存,是吞吐量低的重要原因。提升空间:合理提高该值可显著增加批处理能力。例如从0.35提升到0.
- LLM微调训练指南
小小怪 @
人工智能自然语言处理
模型选择策略开源LLM的选择需综合评估任务需求与资源限制:LLaMA-2(7B/13B/70B):商用友好,推荐使用HuggingFace格式的社区变体(如NousResearch版本)Mistral(7B):Apache2.0许可,在推理和数学任务表现突出Falcon(7B/40B):商业授权宽松,特别适合多轮对话场景硬件匹配参考:NVIDIA3090可微调7B模型(QLoRA),A100建议尝
- ✨零基础手把手|Docker+vLLM极速部署OpenAI风格API:5分钟4卡GPU推理+避坑指南+完整镜像配置
杨靳言先
pythondockervllm部署
一、Docker基础命令查看容器状态Bashdockerps#查看运行中的容器dockerps-a#查看所有容器(包括已停止的)查看镜像列表Bashdockerimages#列出本地所有镜像二、镜像与容器操作镜像打包为.tar文件Bashdockersave-o#将镜像导出为.tar文件#示例:dockersave-omy_image.tarvllm/vllm-openai:v0.8.4打包多个镜
- ERNIE-4.5-0.3B 实战指南:文心一言 4.5 开源模型的轻量化部署与效能跃升
当行业还在为千亿参数模型的算力消耗争论不休时,百度文心一言4.5开源版本以颠覆性姿态撕开了一条新赛道。2025年6月30日,文心一言4.5系列模型正式开源,其中ERNIE-4.5-0.3B这款仅3亿参数的轻量模型,为破解大模型产业落地的三大困局提供了全新方案:算力门槛:从千万级GPU集群降至消费级单卡部署成本控制:企业私有化部署成本降至传统方案的1/10效率平衡:在保持智能水平的同时实现极致轻量化
- 深度学习GPU工作站主机选择指南:以RTX 5090为核心的2025年配置策略
前言2025年,随着NVIDIARTX5090的发布,深度学习硬件领域迎来了革命性的变化。这款基于Blackwell架构的旗舰GPU不仅在游戏领域表现卓越,更在AI和深度学习应用中展现出前所未有的性能实力。对于深度学习研究者和工程师而言,RTX5090的出现重新定义了工作站配置的标准,其32GBGDDR7显存、768个第五代TensorCore以及大幅提升的计算性能,为大规模模型训练和推理提供了全
- 深度学习-数据操作
数据操作首先,我们来介绍n维数组,也称为张量(tensor)。GPU很好地支持加速计算,而NumPy仅支持CPU计算;并且张量类支持自动微分。这些功能使得张量类更适合深度学习。张量表示一个由数值组成的数组,这个数组可能有多个维度。具有一个轴的张量对应数学上的向量(vector);具有两个轴的张量对应数学上的矩阵(matrix);具有两个轴以上的张量没有特殊的数学名称。上图分别是1维到5维的张量的表
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。