- 【大模型微调实战】4. P-Tuning爆款文案生成:让模型学会小红书“爽感”写作,转化率提升300%
AI_DL_CODE
大模型微调P-Tuning小红书文案爆款生成情绪强化自然语言生成提示工程
摘要:在内容营销竞争白热化的当下,普通文案已难以突破流量壁垒。本文聚焦P-Tuning技术在小红书爆款文案生成中的落地应用,通过参数化提示向量优化,将抽象的“爽感”写作转化为可量化、可训练的技术指标。文中提出“六步成文法”,从情绪化数据集构建到爆款元素复刻,完整拆解如何用RTX3060级显卡实现0.1%参数量微调,使文案点击率从2.1%提升至8.7%,爆文率提高5倍,单条文案带货超8万元。核心创新
- Hive与Hudi集成:增量大数据处理方案
AI大数据智能洞察
大数据与AI人工智能大数据AI应用hivehadoop数据仓库ai
Hive与Hudi集成:增量大数据处理方案关键词:Hive、Hudi、增量大数据处理、数据集成、数据湖摘要:本文主要探讨了Hive与Hudi集成的增量大数据处理方案。我们将深入了解Hive和Hudi的核心概念,剖析它们之间的关系,详细阐述集成的算法原理与操作步骤,通过实际项目案例展示如何进行开发环境搭建、代码实现与解读。同时,会介绍该集成方案的实际应用场景、相关工具和资源,探讨未来发展趋势与挑战。
- 【免费下载】 探索PlantVillage-Dataset:深度学习在植物病害检测中的革命性突破
探索PlantVillage-Dataset:深度学习在植物病害检测中的革命性突破在这个数字化时代,人工智能正逐步改变我们的生活,其中深度学习在农业领域的应用尤其引人注目。PlantVillage-Dataset是一个开放源代码的项目,它提供了一个庞大的植物病害识别数据集,旨在帮助开发人员和研究者利用机器学习技术改善农作物健康状况的监测。本文将深入探讨该项目的技术细节、应用价值及其独特之处。项目简
- 【YOLO系列】YOLOv4详解:模型结构、损失函数、训练方法及代码实现
一碗白开水一
yolo系列助你拿捏AI算法YOLO目标跟踪人工智能目标检测计算机视觉论文阅读
YOLOv4详解:模型结构、损失函数、训练方法及代码实现motivationYOLO系列作者JosephRedmon与AlexeyBochkovskiy致力于解决目标检测领域的核心矛盾:精度与速度的平衡。YOLOv4的诞生源于两大需求:工业落地:在移动端/边缘设备实现实时检测(>30FPS)学术突破:无需昂贵算力(如1080Ti即可训练),在MSCOCO数据集达到SOTAmethods1.数据加载
- JavaScript对象与Math对象完全指南
hui函数
Javascriptjavascript前端开发语言
JavaScript对象与Math对象完全指南对象基础概念与操作对象是什么?数据集合:包含相关数据和功能的容器结构组成:属性:描述对象特征的变量(名词性)方法:对象可执行的操作(动词性,本质是函数)对象创建与访问//创建对象letperson={ //属性 name:"张三", age:28, profession:"软件工程师", //方法 introduce(){ return`大家好,我
- 重构数据库未来:金仓数据库,抢占 AI 原生时代先机
7月15日,国产数据库厂商中电科金仓(北京)科技股份有限公司(以下简称“电科金仓”)在北京举行了一场技术发布会,集中发布四款核心产品:AI时代的融合数据库KESV92025、企业级统一管控平台KEMCC、数据库一体机(云数据库AI版)以及企业级智能海量数据集成平台KFSUltra,并同步举行了“金兰组织2.0”启动仪式。如果放在过去几年,这场发布会可能被归入“信创替代”的常规范畴。但这一次,电科金
- 基于Python的酒店订单数据分析与可视化实战
不若浮生一梦
python作业python数据分析开发语言
本文将通过一个酒店订单数据集,展示如何使用Python进行完整的数据分析流程,包括数据清洗、特征工程、探索性分析、可视化以及业务洞察,适合数据分析初学者或想通过项目提升数据思维的开发者。一、项目背景随着旅游业的迅速发展,酒店运营者越来越依赖数据分析来提升客户体验与优化收益管理。本项目基于某国际连锁酒店集团提供的真实订单数据,包含超过10万条记录,涵盖订单类型、顾客行为、取消情况等多个维度。目标是通
- 数据赋能(343)——数据整合——概述
lh1793
数据
进行数据整合时,需要遵循以下原则以确保整合数据的完整性、一致性、准确性和可用性。全方位集成原则:信息整合系统既是“数据中心”也是“业务中心”,应具备界面集成、数据集成、应用迁移、业务集成等能力。全面集成原则:既要支持逻辑集成,也要支持物理集成,确保数据的全面性和完整性。集约性原则:整合后的数据库应符合数据库标准要求,避免冗余,为数据共享奠定基础。衔接性原则:在数据整合过程中,应考虑到与不同比例尺或
- 大模型QLoRA微调——基于Qwen2-7B的自动化病历摘要生成系统
01项目简介(1)项目背景医疗文档中包含大量的诊疗信息,例如疾病诊断、手术名称、解剖部位、药物使用以及影像和实验室检查结果。这些信息是医疗数据分析的核心,但由于医疗文本内容复杂、格式多样,提取这些关键内容具有一定挑战。为此,本项目基于Qwen-7B大语言模型,通过QLoRA微调,使其从医疗文档中识别并提取这些信息。(2)数据集介绍本项目在Yidu-S4K数据集上进行指令微调任务,该数据共计包含10
- Python中的 filter() | 函数详解
2401_87650616
python开发语言
目录前言一、基本概念基本语法二、使用方式1.使用lambda函数2.使用普通函数3.使用None过滤假值三、filter()与列表推导式对比1.filter()方式2.列表推导式方式3.选择建议四、常见应用场景1.过滤偶数2.过滤空字符串3.过滤None值4.过滤质数五、注意事项与最佳实践1.惰性求值:filter()返回的是迭代器,只在需要时计算,节省内存2.性能考虑:对于大数据集,filter
- 标签助手:基于LabelImg和YOLOv5的图像半自动标注工具
伏容一Julia
标签助手:基于LabelImg和YOLOv5的图像半自动标注工具项目基础介绍标签助手(labelGo-Yolov5AutoLabelImg)是一个图形化的半自动图像注解工具,它结合了广受欢迎的图像标注工具LabelImg的力量与先进的目标检测框架YOLOv5。这个开源项目旨在简化数据集的标注过程,利用现有YOLOv5PyTorch模型实现快速的半自动化标注,极大地提高了标注效率。项目主要采用Pyt
- SpringBoot Stream实战指南
Stream的概念Stream(流)是计算机科学中用于处理数据序列的抽象概念,通常指按顺序读取或写入的数据集合。它可以是文件、网络连接、内存缓冲区等数据源的抽象表示,允许逐块处理数据而无需一次性加载全部内容。Stream的类型输入流(InputStream)从数据源(如文件、网络)读取数据,例如FileInputStream用于读取文件内容。输出流(OutputStream)向目标(如文件、控制台
- 汤逊湖高分辨率矢量图Shp文件及ArcGIS应用指南
夏曦安
本文还有配套的精品资源,点击获取简介:本矢量图数据集针对汤逊湖地理信息,提供了精确的边界、形状及属性信息,适用于多种领域。介绍SHP文件及其相关文件格式,展示了在ArcGIS中如何进行空间分析,包括地形、缓冲区、叠加、网络分析,模拟分析,以及可视化等功能,强调其在环境科学、城市规划等领域的应用价值。1.汤逊湖矢量图数据集概述在地理信息系统(GIS)领域,准确、丰富的数据集是进行空间分析和决策支持的
- RK3568笔记九十三:基于RKNN Lite的YOLOv5目标检测
殷忆枫
RK3568学习笔记笔记YOLO
若该文为原创文章,转载请注明原文出处。一、介绍Yolov5是一种目标检测算法,属于单阶段目标检测方法,是在COCO数据集上预训练的物体检测架构和模型系列,它代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。最新的YOLOv5v7.0有YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x等,除了目标检测,
- 博客摘录「 适合小白的超详细yolov8环境配置+实例运行教程,从零开始教你如何使用yolov8训练自己的数据集(Windows+conda+pycharm)」2024年3月13日
激活虚拟环境使用condaactivate命令激活虚拟环境,激活成功的标志就是命令行前面的(base)换
- 电科金仓全栈出击,“融合数据库平台”挑战AI时代新范式
7月15日,国产数据库厂商中电科金仓(北京)科技股份有限公司(以下简称“电科金仓”)在北京举行了一场技术发布会,集中发布四款核心产品:AI时代的融合数据库KESV92025、企业级统一管控平台KEMCC、数据库一体机(云数据库AI版)以及企业级智能海量数据集成平台KFSUltra,并同步举行了“金兰组织2.0”启动仪式。如果放在过去几年,这场发布会可能被归入“信创替代”的常规范畴。但这一次,电科金
- 读心与芯:我们与机器人的无限未来05未来之路
躺柒
机器人机器人学人工智能大数据分析智能计算
1.概念1.1.利用数据确定模式,描述数据集的某些属性,基于过去的经历判断未来可能发生什么,或基于当前发生的事情判断后果或反应1.2.机器学习(machinelearning)是人工智能的一个子集,它不需要显式编程,为系统提供自动学习和根据经验改进的能力1.2.1.机器学习算法基于样本数据(又称训练数据)构建模型,在未经显式编程的情况下对未来数据做出预测或决策1.2.2.机器学习有多种类型,包括有
- 电科金仓“融合数据库”发布:锚定AI时代,重构国产数据库格局
可涵不会debug
AI赋能数据库人工智能重构
7月15日,国产数据库厂商中电科金仓(北京)科技股份有限公司(以下简称“电科金仓”)在北京举行了一场技术发布会,集中发布四款核心产品:AI时代的融合数据库KESV92025、企业级统一管控平台KEMCC、数据库一体机(云数据库AI版)以及企业级智能海量数据集成平台KFSUltra,并同步举行了“金兰组织2.0”启动仪式。如果放在过去几年,这场发布会可能被归入“信创替代”的常规范畴。但这一次,电科金
- svm支持向量机实例--线性非线性实例代码可运行
fromsklearnimportsvmimportnumpyasnpimportsklearn#因为Python中的sklearn库也集成了SVM算法,所以在Python中一样可以使用支持向量机做分类#取数据集path=r'D:\svm\iris.data'#Iris.data的数据格式如下:共5列,前4列为样本特征,第5列为类别,分别有三种类别Iris-setosa,Iris-versicol
- Python数据可视化库之autoviz使用详解
概要在数据可视化的广阔领域中,快速且智能地将数据转化为直观图表,是数据分析师和开发者的共同需求。Python的autoviz库应运而生,它凭借“一键生成可视化”的强大功能,极大地简化了数据可视化流程。无论是处理简单数据集,还是复杂的多变量数据,autoviz都能自动分析数据特征,生成高质量可视化结果,成为提升数据分析效率的得力助手。安装与验证1、安装方法autoviz库的安装可以借助Python常
- 【SVM】支持向量机实例合集
KENYCHEN奉孝
支持向量机算法机器学习
基于Java的SVM(支持向量机)实例合集以下是一个基于Java的SVM(支持向量机)实例合集,包含核心代码示例和应用场景说明。这些例子基于流行的机器学习库(如LIBSVM、Weka、JSAT)实现。数据准备与加载使用LIBSVM格式加载数据集://加载LIBSVM格式数据svm_problemprob=newsvm_problem();prob.l=dataSize;//样本数量prob.x=n
- 数据挖掘实战-基于随机森林算法的空气质量污染预测模型
艾派森
数据挖掘实战合集信息可视化人工智能python数据挖掘随机森林
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍3.技术工具4.实验过程
- 9、LLaMA-Factory项目微调介绍
Andy_shenzl
大模型学习llamaLLaMAFactory微调大模型LoRA
1、LLaMAFactory介绍 LLaMAFactory是一个在GitHub上开源的项目,该项目给自身的定位是:提供一个易于使用的大语言模型(LLM)微调框架,支持LLaMA、Baichuan、Qwen、ChatGLM等架构的大模型。更细致的看,该项目提供了从预训练、指令微调到RLHF阶段的开源微调解决方案。截止目前(2024年3月1日)支持约120+种不同的模型和内置了60+的数据集,同时封
- [2025CVPR-图象合成、生成方向]ODA-GAN:由弱监督学习辅助的正交解耦比对GAN 虚拟免疫组织化学染色
清风AI
计算机视觉算法深度学习算法详解及代码复现生成对抗网络机器学习目标检测目标跟踪人工智能傅立叶分析深度学习
目录1.背景和动机2.方法概述:ODA-GAN框架2.1弱监督分割管道2.2样本重新划分策略2.3ODA-GAN核心模块3.实验设置与结果3.1数据集和评估指标3.2性能比较3.3消融研究4.结论与贡献1.背景和动机虚拟免疫组化(IHC)染色技术旨在通过生成模型将H&E染色图像转换为IHC染色图像,从而避免繁琐的物理染色过程(如重复切片和抗体处理)。然而,现有方法面临关键挑战:染色不真实与不可靠性
- 3D并行与4D并行
3D并行3D并行通常指的是将以下三种并行策略结合起来:D1:数据并行(DataParallelism)D2:张量并行(TensorParallelism)D3:流水线并行(PipelineParallelism)各个“D”的含义及详细讲解1.数据并行(DataParallelism)含义:在数据并行中,每个设备(或一组设备)都持有完整的模型副本。训练数据集被分成多个批次(mini-batches)
- 暗流涌动
创作人李新钢
深度学习和所有机器学习方法一样,是一种用数学模型对真实世界中的特定问题进行建模,以解决该领域内相似问题的过程。要教计算机认字,差不多也是同样的道理。计算机也要先把每一个字的图案反复看很多很多遍,然后,在计算机的大脑(处理器加上存储器)里,总结出一个规律来,以后计算机再看到类似的图案,只要符合之前总结的规律,计算机就能知道这图案到底是什么字。学习的、反复看的图片叫“训练数据集”;“训练数据集”中,一
- 详解C++中的全局算法
超级飞侠12138
C++c++开发语言c语言
全局算法在C++中,全局算法通常指的是不依赖于特定数据结构或对象,而是可以在各种数据集合上使用的通用算法。这些算法通常定义在标准模板库(STL)中,因此可以在整个程序中重复使用,适用于多种数据类型。STL中的算法可以作用于数组、向量、列表、集合、映射等容器。使用这些算法时,通常需要包含头文件。(1)遍历算法std::for_eachstd::for_each算法用于对容器中的每个元素执行指定的函数
- 【数据集】全球 0.5 度湿地甲烷排放与不确定性数据集 WetCHARTs
WW、forever
数据集CH4
目录数据概述v1.3.3新特性应用与验证数据下载数据文件信息模型配置说明(四位代码)空间与时间覆盖参考数据集名称:CMS:全球0.5度湿地甲烷排放与不确定性(WetCHARTsv1.3.3)数据概述数据概述-WetCHARTsv1.3.1数据概述-WetCHARTsv1.3.3此数据集提供了2001年1月1日至2022年8月31日期间,全球湿地甲烷(CH₄)排放的月度估算数据,空间分辨率为0.5x
- Excel快速入门教程8-数据透视表
python测试开发
有时您需要分析大量数据,成易于阅读和理解的报告。数据透视图允许我们分析此类数据并生成满足业务要求的报告。在本教程中,我们将介绍以下主题;什么是数据透视图?创建数据透视图二维数据透视图什么是数据透视图?数据透视图是大数据集的摘要,通常包括总数,平均值,最小值,最大值等。假设您有不同地区的销售数据,使用数据透视图可以按地区汇总数据并查找每个区域的平均销售额,每个区域的最大和最小销售额等。数据透视图允许
- 机器学习实战笔记(四):决策树(Python3 实现)
max_bay
机器学习实战笔记机器学习实战决策树python
1决策树的构造1.1决策树的特点优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。在构造决策树时,我们需要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类时起决定性作用。为了找到决定性的特征,划分出最好的结果,我们必须评估每个特征。完成测试之后,原始数据集就被划分为几个数据子集。这些数据子集会分
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR