- selenium特殊场景处理
Monica_ll
Seleniumseleniumchromepython
文章目录前言一、多窗口处理二、浏览器弹窗处理包含alert、confirm、prompt三、鼠标和键盘事件处理前言在使用selenium操作浏览器的过程中可能需要借助键盘和鼠标功能完成一些操作,或者操作弹窗处理,本文主要是整理自己工作过程中使用过的一些方法一、多窗口处理在实际测试过程中经常会有通过点击或者连接打开新的窗口,这种情况下就需要切换webDriver到对应浏览器对象才能操作新窗口的元素。
- 查看自己电脑安装了wsl
Jiang_Immortals
各平台开源项目python
要查看自己的电脑是否安装了WSL(WindowsSubsystemforLinux),可以按照以下步骤进行:打开WindowsPowerShell或命令提示符(CommandPrompt)。输入以下命令并按回车键执行:wsl--list--verbose等待一段时间,系统会列出已安装的WSL发行版。如果没有任何输出或返回错误消息,则表示未安装WSL。如果您已经安装了WSL,输出将包含已安装的发行版
- 从0搭建到持续优化:提示工程架构师的评估体系迭代全流程
从0搭建到持续优化:提示工程架构师的评估体系迭代全流程引言:AI时代的关键角色与评估挑战在人工智能技术迅猛发展的今天,提示工程(PromptEngineering)已从一个小众技能演变为决定AI系统成败的核心能力。随着大语言模型(LLM)能力的不断增强,提示工程架构师(PromptEngineeringArchitect)作为一个新兴职业应运而生,成为连接业务需求与AI能力的关键桥梁。为什么提示工
- !LangChain代理决策架构与源码深度剖析(75)
LangChain代理决策架构与源码深度剖析一、LangChain代理决策架构概述1.1代理决策架构的核心组件LangChain代理的决策架构是其智能交互的核心,主要由大语言模型(LLM)、工具集(Tools)、提示模板(PromptTemplate)、规划器(Planner)、执行器(Executor)和反馈机制六大组件构成。这些组件通过协同工作,实现从用户输入解析到最终结果输出的完整决策流程。
- Python面向对象编程入门:从类与对象到方法与属性
吴师兄大模型
python人工智能面向对象编程开发语言类对象PYTHON
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- Java AI面试实战:Spring AI与RAG技术落地
GEM的左耳返
Java场景面试宝典Java面试SpringAIRAG向量数据库AI应用Prompt工程
JavaAI面试实战:SpringAI与RAG技术落地面试现场:AI技术终面室面试官:谢飞机同学,今天我们聚焦JavaAI应用开发,重点考察SpringAI和RAG技术栈。谢飞机:(兴奋地)面试官好!我可是AI达人!ChatGPT、Midjourney我天天用,SpringAI这新框架我也研究过!第一轮:SpringAI基础面试官:请详细描述SpringAI的核心组件及PromptTemplate
- LangChain:大模型时代的开发利器
tanak
Python大模型应用全栈实战langchain人工智能python
文章目录什么是LangChain?深入解析其核心理念与组件1.模型(Models)2.提示(Prompts)3.链(Chains)4.索引(Indexes)5.记忆(Memory)6.工具(Tools)7.代理(Agents)LangChain在大模型应用中的核心地位与典型场景核心地位:连接、抽象、赋能典型应用场景:LangChain如何赋能实际业务结语:拥抱LangChain,构建大模型应用的未
- ImportError: cannot import name ‘create_prompt_application‘ from ‘prompt_toolkit.shortcuts‘解决方案
weixin_43178406
Python基础课程
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:cannot
- 为什么说大模型才有泛化能力?小模型做不到的事,提示词也救不了
之之为知知
12大模型人工智能机器学习深度学习大模型小模型模型微调
你有没有发现,同样是人工智能模型,有的只能回答特定问题,而有的却能写诗、写代码、讲道理,甚至还能帮你设计产品方案?比如:小模型可能只会识别“猫”和“狗”,但大模型却能解释“为什么猫喜欢钻纸箱”;小模型可能只能回答“北京的天气怎么样”,但大模型却能分析“如果我要去北京旅游,应该带什么衣服”。很多人以为,只要给小模型加上好的提示词(Prompt),它也能像大模型一样聪明。但事实真的如此吗?这篇文章就来
- 在线重定义 online redefinition
ThefollowingexampledemonstratesonlineredefinitionwithFILE_DATASTOREandresizingatextcolumnprompt>echo"HelloWorld">/home/oracle/world.txtprompt>echo"HelloOracle">/home/oracle/oracle.txtprompt>echo"Hello
- ANACONDA更改PYTHON版本
#如何在anaconda下改变python的版本#进入anacondaprompt#进入控制台termi也可以#condacreate-npy36python=3.6.8#创建虚拟环境#py36是名字#3.6.8是版本
- Prompt Engineering(提示词工程)基础了解
Fuly1024
LLMprompt
参考:https://blog.csdn.net/qq_56438555/article/details/1448865171.基础概念:提示词工程(promptEngineering)是指通过设计、优化输入给大语言模型的文本指令(即“提示词”),引导LLM输出我们期望的结果。让大模型在无需微调(Fine-tuning)的情况下,通过“更好的提问方式”完成复杂任务(开发潜力,不会的还是不会)。但是
- 【大模型实战】提示工程(Prompt Engineering)
喵王叭
AIprompt
文章目录前言一、五大核心原则二、基础技巧1.明确指令与输出2.赋予角色三、进阶技巧1.少样本提示2.思维链提示3.控制输出长度与格式四、迭代与优化:提升提示效果的关键五、提示⼯程最佳实践总结附言前言提示工程是通过优化输入指令(提示词),让AI模型更精准、高效地输出符合需求结果的技术方法。一、五大核心原则清晰明确:避免模糊表述,用具体信息(如“新上市”)替代抽象词汇,精准传递意图。提供上下文:补充背
- 【Python-Day 35】深入理解多态:代码更灵活的“鸭子类型”魔法
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【深度学习-Day 39】玩转迁移学习与模型微调:站在巨人的肩膀上
吴师兄大模型
深度学习入门到精通深度学习迁移学习人工智能python大模型机器学习模型微调
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- gig-gitignore工具实战开发(三):gig add基础实现
叹一曲当时只道是寻常
gigai人工智能go
gig-gitignore工具实战开发(三):gigadd基础实现✨前言:在上一篇我们已经设计了多源模板系统,本篇我们来进行实战。先实现gigadd命令基础代码。一、项目初始化暂略,主要包含如下工作gomodinit项目初始化添加cobra、viper等相关库配置初始化等等参考依赖require(github.com/manifoldco/promptuiv0.9.0github.com/nick
- 大模型的安全风险全解:Prompt Injection、信息泄露与幻觉问题
代码AI弗森
AI人工智能机器学习深度学习
“大模型是聪明的,但它也可能是个会胡说八道的‘熊孩子’。”自从ChatGPT点燃LLM的星火,生成式AI就成了工具箱里的瑞士军刀——写文档、写代码、做分析、开玩笑它都行。但当你把它真正嵌入产品,尤其是企业级应用时,三个问题就像幽灵一样悄悄飘来:PromptInjection(提示注入攻击)️♂️信息泄露(SensitiveLeakage)幻觉现象(Hallucination)它们听起来高大上,实
- 大模型——Prompt 优化还是模型微调
Prompt优化还是模型微调在人工智能飞速发展的当下,大语言模型(LLM)已成为众多领域的关键技术支撑。无论是在智能客服、内容创作,还是数据分析等场景中,LLM都展现出了强大的能力。但在实际应用中,如何让LLM更好地满足特定需求,成为了开发者和企业面临的重要问题。Prompt优化和模型微调作为提升LLM性能的两种主要方式,各有优劣,选择合适的方法对于实现高效、精准的AI应用至关重要。Prompt优
- AI大模型各类概念扫盲
Sao_E
人工智能
以下内容整理自AI,进行一个概念扫盲:Prompt(提示词)Prompt是用户提供给AI模型的指令或问题,用于引导模型生成特定输出。良好的Prompt设计能显著提升模型的任务理解能力和响应质量,例如通过结构化提示(Few-shotPrompting)让模型学习上下文中的示例,或使用思维链(Chain-of-Thought)提示引导模型分步推理。在Agent开发中,Prompt是控制行为的第一环,直
- langchain四种内置链的使用
努力学习agent
langchainlangchain
#四种基础内置链的介绍与使用#LLMChain最常用的链式fromlangchain.chainsimportLLMChainfromlangchain.llmsimportOpenAIfromlangchain.promptsimportPromptTemplatellm=OpenAI(temperature=0)prompt_template="帮我给{product}想三个可以注册的域名"l
- 大语言模型提示工程全攻略:从零样本到 ReAct,一篇吃透
冻感糕人~
语言模型react.js人工智能大模型应用langchain大模型产品经理
提示词(Prompt)是与大语言模型沟通的关键。无论你是在用ChatGPT,还是开发LLM应用,只有写出清晰、高效的提示词,模型才能真正“听懂你在说什么”。提示工程(PromptEngineering)是一门设计高质量提示词的技巧与方法。通过巧妙地提示词设计,可以显著提升大语言模型的输出效果——让它回应得更准确、更连贯、更有创意,也更贴合你的实际需求。在这篇文章中,我将与你分享一些实用且经过验证的
- 【Go语言-Day 24】从混乱到有序:Go 语言包 (Package) 管理实战指南
吴师兄大模型
Go语言从入门到精通golang开发语言后端go语言人工智能python大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【JavaScript-Day 7】全面解析 Number 与 String:JS 数据核心操作指南
吴师兄大模型
javascript开发语言java前端后端人工智能LLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【深度学习-Day 10】机器学习基石:从零入门线性回归与逻辑回归
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 基于Prompt 的DevOps 与终端重塑
旧曲重听1
promptdevops人工智能
本文整理自WarpCEO扎克·洛伊德过去,DevOps工程师把大量时间花在「拧螺丝」:写脚本、配环境、查日志、排故障。现在,只需一句自然语言提示,代理就能接手这些重复步骤——工程师从「执行者」变成「指挥者」。但指挥者仍然需要一个指挥台:命令行。命令行:等待进化的「老伙计」·优点:直接、精确、系统级权限,仍是部署、排障、自动化的黄金标准。·缺点:–不懂「意图」:它只知道指令,不知道“为什么要这么干”
- conda安装geemap
Prophet.Z
geemapGEEcondapython深度学习
打个卡,开始学习使用geemap网址:http://geemap.org/installation/conda安装geemap:打开Anacondaprompt终端,输入:condainstallgeemap-cconda-forge吴秋生老师建议创建一个新的conda环境来安装geemap。安装以下命令设置condaenv并按照geemap和pygis,其中包括geemap的所有可选的安装包。c
- AI Agent开发学习系列 - langchain之示例选择器2:相关性与多样性兼得-MaxMarginalRelevanceExampleSelector在LangChain中的用法
alex100
AIAgent学习人工智能langchainprompt语言模型python
MaxMarginalRelevanceExampleSelectorMaxMarginalRelevanceExampleSelector是LangChain中用于Few-ShotPrompt的一种智能示例选择器。它的作用是:在众多示例中,自动选择与当前输入最相关、同时彼此多样性最大的示例,插入到prompt里。主要特点相关性优先:优先选择与用户输入最相似的示例。多样性保证:避免选到内容高度重复
- 【大模型记忆实战Demo】基于SpringAIAlibaba通过内存和Redis两种方式实现多轮记忆对话
Sao_E
redis数据库缓存ai语言模型
文章目录多轮对话记忆管理——基于Memory的对话记忆基于内存存储历史对话基于Redis存储历史对话多轮对话记忆管理——基于Memory的对话记忆SpringAIAlibaba共实现了三种方式:基于内存的方式基于jdbc(数据库)的方式基于redis的方式下文主要演示基于内存和redis的方式基于内存存储历史对话代码首先定义大模型的角色,一个旅游规划师设置增强拦截器接着接口传入prompt和cha
- PD分离技术分析
老兵发新帖
人工智能
PD分离中的“PD”指的是大语言模型(LLM)推理过程中的两个核心阶段:Prefill(预填充)和Decode(解码)。这两个阶段在计算特性和资源需求上存在显著差异,分离部署可优化整体性能。以下是详细解析:一、PD的具体含义Prefill(预填充阶段)任务:处理用户输入的整个提示(Prompt),为所有Token生成初始的键值缓存(KVCache)和隐藏状态(HiddenStates)。特性:计算
- Python FastMCP:让你的AI工具链飞起来
PythonFastMCP:让你的AI工具链飞起来FastMCPFastMCP是什么?1.工具(Tools):赋予LLM执行能力2.Resources(资源):安全数据通道3.Prompts(提示模板):标准化LLM交互4.组件协同:构建项目AI工具链5.部署架构与性能优化博主热门文章推荐:官方文档:FastMCP官方文档:https://gofastmcp.com/MCP协议规范:https:/
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,