STM32存储左右互搏 SPI总线读写FLASH W25QXX

STM32存储左右互搏 SPI总线读写FLASH W25QXX

FLASH是常用的一种非易失存储单元,W25QXX系列Flash有不同容量的型号,如W25Q64的容量为64Mbit,也就是8MByte。这里介绍STM32CUBEIDE开发平台HAL库操作W25Q各型号FLASH的例程。

W25QXX介绍

W25QXX的SOIC封装如下所示,在采用SPI而不是QUAL SPI时,管脚定义为:
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第1张图片
即由片选(/CS), 时钟(CLK), 数据输出(DO)和数据输入(DI)的组成4线SPI信号接口。VCC和GND提供电源和接地连接。

例程采用STM32H750VBT6芯片, FLASH可以选择为8/16/32/64/128/256/512/1024 Mbit的W25Q型号。

STM32工程配置

首先建立基本工程并设置时钟:
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第2张图片
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第3张图片

选择硬件接口SPI2为FLASH连接接口,片选采用软件代码控制方式,单独设置为输出GPIO:
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第4张图片
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第5张图片
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第6张图片
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第7张图片
不采用中断和DMA方式,需要时可以再添加,调用相对应的操作库函数及补充中断处理函数即可。
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第8张图片
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第9张图片
配置UART1用于控制打印:
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第10张图片
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第11张图片
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第12张图片
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第13张图片
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第14张图片
STM32H7资源较多,可以将堆栈开大:

STM32存储左右互搏 SPI总线读写FLASH W25QXX_第15张图片

保存并生成初始工程代码:
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第16张图片

STM32工程代码

UART串口printf打印输出实现参考:STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)

建立W25Q访问的库头文件W25QXX.h:

#ifndef INC_W25QXX_H_
#define INC_W25QXX_H_

#include "main.h"

uint8_t SPI2_ReadWriteByte(uint8_t TxData);

//W25QXX serial chip list:
#define W25Q20_ID 	0XEF11
#define W25Q40_ID 	0XEF12
#define W25Q80_ID 	0XEF13
#define W25Q16_ID 	0XEF14
#define W25Q32_ID 	0XEF15
#define W25Q64_ID 	0XEF16
#define W25Q128_ID	0XEF17
#define W25Q256_ID	0XEF18
#define W25Q512_ID  0XEF19
#define W25Q1024_ID 0XEF20

extern uint16_t W25QXX_TYPE; //To indicate W25QXX type used in this procedure

//W25QXX chip select control function
#define W25QXX_CS(n)  ( n ? HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET) : HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_RESET) )

//command table for W25QXX access
#define W25X_WriteEnable		0x06
#define W25X_WriteDisable		0x04
#define W25X_ReadStatusReg1		0x05
#define W25X_ReadStatusReg2		0x35
#define W25X_ReadStatusReg3		0x15
#define W25X_WriteStatusReg1    0x01
#define W25X_WriteStatusReg2    0x31
#define W25X_WriteStatusReg3    0x11
#define W25X_ReadData			0x03
#define W25X_FastReadData		0x0B
#define W25X_FastReadDual		0x3B
#define W25X_PageProgram		0x02
#define W25X_BlockErase			0xD8
#define W25X_SectorErase		0x20
#define W25X_ChipErase			0xC7
#define W25X_PowerDown			0xB9
#define W25X_ReleasePowerDown	0xAB
#define W25X_DeviceID			0xAB
#define W25X_ManufactDeviceID	0x90
#define W25X_JedecDeviceID		0x9F
#define W25X_Enable4ByteAddr    0xB7
#define W25X_Exit4ByteAddr      0xE9

uint8_t W25QXX_Init(void);
uint16_t  W25QXX_ReadID(void);  	    		  //Read W25QXX ID
uint8_t W25QXX_ReadSR(uint8_t reg_num);           //Read from status register
void W25QXX_4ByteAddr_Enable(void);               //Enable 4-byte address mode
void W25QXX_Write_SR(uint8_t reg_num,uint8_t d);  //Write to status register
void W25QXX_Write_Enable(void);  		          //Write enable
void W25QXX_Write_Disable(void);		          //Write disable
void W25QXX_Write_NoCheck(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite); //Write operation w/o check
void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead);            //Read operation
void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite);         //Write operation
void W25QXX_Erase_Chip(void);    	  	                                                //Erase whole chip
void W25QXX_Erase_Sector(uint32_t Sector_Num);	                                        //Erase sector in specific sector number
void W25QXX_Wait_Busy(void);           	       //Wait idle status before next operation
void W25QXX_PowerDown(void);        	       //Enter power-down mode
void W25QXX_WAKEUP(void);				       //Wake-up


#endif /* INC_W25QXX_H_ */


建立W25Q访问的库源文件W25QXX.c:

#include "W25QXX.h"

extern SPI_HandleTypeDef hspi2;
extern void PY_Delay_us_t(uint32_t Delay);
//Write and read one byte in SPI2
uint8_t SPI2_ReadWriteByte(uint8_t TxData)
{
    uint8_t Rxdata;
    HAL_SPI_TransmitReceive(&hspi2,&TxData,&Rxdata,1, 1000);
 	return Rxdata;
}

uint16_t W25QXX_TYPE=W25Q64_ID;

//W25QXX initialization
uint8_t W25QXX_Init(void)
{
    uint8_t temp;

	W25QXX_CS(1);

	W25QXX_TYPE=W25QXX_ReadID();

    if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID))
    {
        temp=W25QXX_ReadSR(3);              //read status register 3
        if((temp&0X01)==0)			        //judge address mode and configure to 4-byte address mode
		{
			W25QXX_CS(0);
			SPI2_ReadWriteByte(W25X_Enable4ByteAddr);
			W25QXX_CS(1);
		}
    }

    if((W25QXX_TYPE==0x0000)||(W25QXX_TYPE==0xFFFF)) return 0;
    else return 1;
}

//Read status registers of W25QXX
//reg_num: register number from 1 to 3
//return: value of selected register

//SR1 (default 0x00):
//BIT7  6   5   4   3   2   1   0
//SPR   RV  TB BP2 BP1 BP0 WEL BUSY
//SPR: default 0, status register protection bit used with WP
//TB,BP2,BP1,BP0: FLASH region write protection configuration
//WEL: write enable lock
//BUSY: busy flag (1: busy; 0: idle)

//SR2:
//BIT7  6   5   4   3   2   1   0
//SUS   CMP LB3 LB2 LB1 (R) QE  SRP1

//SR3:
//BIT7      6    5    4   3   2   1   0
//HOLD/RST  DRV1 DRV0 (R) (R) WPS ADP ADS
uint8_t W25QXX_ReadSR(uint8_t reg_num)
{
	uint8_t byte=0,command=0;
    switch(reg_num)
    {
        case 1:
            command=W25X_ReadStatusReg1;    //To read status register 1
            break;
        case 2:
            command=W25X_ReadStatusReg2;    //To read status register 2
            break;
        case 3:
            command=W25X_ReadStatusReg3;    //To read status register 3
            break;
        default:
            command=W25X_ReadStatusReg1;
            break;
    }
	W25QXX_CS(0);
	SPI2_ReadWriteByte(command);    //send command
	byte=SPI2_ReadWriteByte(0Xff);  //read data
	W25QXX_CS(1);
	return byte;
}

//Write status registers of W25QXX
//reg_num: register number from 1 to 3
//d: data for updating status register
void W25QXX_Write_SR(uint8_t reg_num,uint8_t d)
{
    uint8_t command=0;
    switch(reg_num)
    {
        case 1:
            command=W25X_WriteStatusReg1;    //To write status register 1
            break;
        case 2:
            command=W25X_WriteStatusReg2;    //To write status register 2
            break;
        case 3:
            command=W25X_WriteStatusReg3;    //To write status register 3
            break;
        default:
            command=W25X_WriteStatusReg1;
            break;
    }
	W25QXX_CS(0);
	SPI2_ReadWriteByte(command);            //send command
	SPI2_ReadWriteByte(d);                  //write data
	W25QXX_CS(1);
}
//W25QXX write enable
void W25QXX_Write_Enable(void)
{
	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_WriteEnable);
	W25QXX_CS(1);
}
//W25QXX write disable
void W25QXX_Write_Disable(void)
{
	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_WriteDisable);
	W25QXX_CS(1);
}

//Read chip ID
//return:
//0XEF11 for W25Q20
//0XEF12 for W25Q40
//0XEF13 for W25Q80
//0XEF14 for W25Q16
//0XEF15 for W25Q32
//0XEF16 for W25Q64
//0XEF17 for W25Q128
//0XEF18 for W25Q256
uint16_t W25QXX_ReadID(void)
{
	uint16_t Temp = 0;
	W25QXX_CS(0);
	SPI2_ReadWriteByte(0x90);          //send command
	SPI2_ReadWriteByte(0x00);
	SPI2_ReadWriteByte(0x00);
	SPI2_ReadWriteByte(0x00);
	Temp|=SPI2_ReadWriteByte(0xFF)<<8; //read high byte data
	Temp|=SPI2_ReadWriteByte(0xFF);    //read low byte data
	W25QXX_CS(1);
	return Temp;
}
//Read W25QXX from specific address for specific byte length
//pBuffer: data buffer
//ReadAddr: specific address
//NumByteToRead: specific byte length (max 65535)
void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead)
{
 	uint16_t i;
	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_ReadData);                   //send read command
    if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID))   //send highest 8-bit address
    {
        SPI2_ReadWriteByte((uint8_t)((ReadAddr)>>24));
    }
    SPI2_ReadWriteByte((uint8_t)((ReadAddr)>>16));       //send 24-bit address
    SPI2_ReadWriteByte((uint8_t)((ReadAddr)>>8));
    SPI2_ReadWriteByte((uint8_t)ReadAddr);
    for(i=0;i<NumByteToRead;i++)
	{
        pBuffer[i]=SPI2_ReadWriteByte(0XFF);             //read data
    }
	W25QXX_CS(1);
}

//Write W25QXX not more than 1 page (256 bytes)
//pBuffer: data buffer
//WriteAddr: specific address
//NumByteToWrite: specific byte length (max 256)
void W25QXX_Write_Page(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{
 	uint16_t i;
    W25QXX_Write_Enable();                                       //write enable
	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_PageProgram);                        //send write command
    if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID))  //send highest 8-bit address
    {
        SPI2_ReadWriteByte((uint8_t)((WriteAddr)>>24));
    }
    SPI2_ReadWriteByte((uint8_t)((WriteAddr)>>16));               //send 24-bit address
    SPI2_ReadWriteByte((uint8_t)((WriteAddr)>>8));
    SPI2_ReadWriteByte((uint8_t)WriteAddr);
    for(i=0;i<NumByteToWrite;i++)SPI2_ReadWriteByte(pBuffer[i]);  //write data
	W25QXX_CS(1);
	W25QXX_Wait_Busy();
}

//Write W25QXX w/o erase check and w/o byte number restriction
//pBuffer: data buffer
//WriteAddr: specific address
//NumByteToWrite: specific byte length (max 65535)
void W25QXX_Write_NoCheck(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{
	uint16_t remained_byte_num_in_page;
	remained_byte_num_in_page=256-WriteAddr%256;                                                       //remained byte number in page
	if( NumByteToWrite <= remained_byte_num_in_page ) remained_byte_num_in_page = NumByteToWrite;      //data can be written in single page
	while(1)
	{
		W25QXX_Write_Page(pBuffer,WriteAddr,remained_byte_num_in_page);
		if(NumByteToWrite==remained_byte_num_in_page)break;                                            //end write operation
	 	else                                                                                           //NumByteToWrite>remained_byte_num_in_page
		{
			pBuffer+=remained_byte_num_in_page;
			WriteAddr+=remained_byte_num_in_page;

			NumByteToWrite-=remained_byte_num_in_page;
			if(NumByteToWrite>256)remained_byte_num_in_page=256;                                       //for whole page write
			else remained_byte_num_in_page=NumByteToWrite; 	                                           //for non-whole page write
		}
	};
}

//Write W25QXX w/ erase after check and w/o byte number restriction
//pBuffer: data buffer
//WriteAddr: specific address
//NumByteToWrite: specific byte length (max 65535)
uint8_t W25QXX_BUFFER[4096];
void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite)
{
	uint32_t secpos;
	uint16_t secoff;
	uint16_t secremain;
 	uint16_t i;
	uint8_t * W25QXX_BUF;
   	W25QXX_BUF=W25QXX_BUFFER;
 	secpos=WriteAddr/4096;                                        //sector number (16 pages for 1 sector) for destination address
	secoff=WriteAddr%4096;                                        //offset address in sector for destination address
	secremain=4096-secoff;                                        //remained space for sector
 	if(NumByteToWrite<=secremain)secremain=NumByteToWrite;        //data can be written in single sector
	while(1)
	{
		W25QXX_Read(W25QXX_BUF,secpos*4096,4096);                 //read sector data for ease necessity judgment
		for(i=0;i<secremain;i++)                                  //check sector data status
		{
			if(W25QXX_BUF[secoff+i]!=0XFF) break;                 //ease necessary
		}

		if(i<secremain)                                           //for ease
		{
			W25QXX_Erase_Sector(secpos);                          //ease sector
			for(i=0;i<secremain;i++)	                          //data copy
			{
				W25QXX_BUF[i+secoff]=pBuffer[i];
			}
			W25QXX_Write_NoCheck(W25QXX_BUF,secpos*4096,4096);     //write sector

		}
		else W25QXX_Write_NoCheck(pBuffer,WriteAddr,secremain);   //write data for sector unnecessary to erase

		if(NumByteToWrite==secremain)break;                        //for operation end
		else                                                       //for operation continuing
		{
			secpos++;                                              //sector number + 1
			secoff=0;                                              //offset address from 0

		   	pBuffer+=secremain;                                    //pointer adjustment
			WriteAddr+=secremain;                                  //write address adjustment
		   	NumByteToWrite-=secremain;				               //write number adjustment
			if(NumByteToWrite>4096) secremain=4096;	               //not last sector
			else secremain=NumByteToWrite;			               //last sector
		}
	};
}

//Erase whole chip, long waiting...
void W25QXX_Erase_Chip(void)
{
    W25QXX_Write_Enable();                  //write enable
    W25QXX_Wait_Busy();
  	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_ChipErase);     //send erase command
	W25QXX_CS(1);
	W25QXX_Wait_Busy();   				    //wait for erase complete
}

//Erase one sector
//Sector_Num: sector number
void W25QXX_Erase_Sector(uint32_t Sector_Num)
{
 	Sector_Num*=4096;
    W25QXX_Write_Enable();                                     //write enable
    W25QXX_Wait_Busy();
  	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_SectorErase);                      //send erase command
    if((W25QXX_TYPE==W25Q256_ID)||(W25QXX_TYPE==W25Q512_ID)||(W25QXX_TYPE==W25Q1024_ID))  //send highest 8-bit address
    {
        SPI2_ReadWriteByte((uint8_t)((Sector_Num)>>24));
    }
    SPI2_ReadWriteByte((uint8_t)((Sector_Num)>>16));           //send 24-bit address
    SPI2_ReadWriteByte((uint8_t)((Sector_Num)>>8));
    SPI2_ReadWriteByte((uint8_t)Sector_Num);
	W25QXX_CS(1);
    W25QXX_Wait_Busy();   				                       //wait for erase complete
}

//Wait idle status before next operation
void W25QXX_Wait_Busy(void)
{
	while((W25QXX_ReadSR(1)&0x01)==0x01);    //wait for busy flag cleared
}

//Enter power-down mode
#define tDP_us 3
void W25QXX_PowerDown(void)
{
  	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_PowerDown);      //send power-down command
	W25QXX_CS(1);
	PY_Delay_us_t(tDP_us);                   //tDP
}
//Wake-up
#define tRES1_us 3
void W25QXX_WAKEUP(void)
{
  	W25QXX_CS(0);
    SPI2_ReadWriteByte(W25X_ReleasePowerDown);//send release power-down command
	W25QXX_CS(1);
	PY_Delay_us_t(tRES1_us);                  //tRES1
}


main.c文件操作代码里实现串口接收1个字节的指令,实现FLASH的ID读取,一页的写入,一页的读出三个功能。其它功能可以根据需要自行增加

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "usart.h"
#include "W25QXX.h"
#include 
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}


void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

SPI_HandleTypeDef hspi2;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */
uint8_t uart1_rx[16];
uint8_t cmd;
uint32_t Flash_Access_Addr = 0;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void PeriphCommonClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_SPI2_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#define page_byte_size 256
uint8_t sdbuffer[page_byte_size];
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

/* Configure the peripherals common clocks */
  PeriphCommonClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  MX_SPI2_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  HAL_UART_Receive_IT(&huart1, uart1_rx, 1);

  W25QXX_Init();

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	     if(cmd==1) //Read ID
	     {
	    	 cmd = 0;
	    	 printf("FLASH ID=0x%x\r\n\r\n", W25QXX_ReadID());
		      printf("W25Q80_ID: 0XEF13\r\n");
		      printf("W25Q16_ID: 0XEF14\r\n");
		      printf("W25Q32_ID: 0XEF15\r\n");
		      printf("W25Q64_ID: 0XEF16\r\n");
		      printf("W25Q128_ID: 0XEF17\r\n");
		      printf("W25Q256_ID: 0XEF18\r\n");
		      printf("W25Q512_ID: 0XEF18\r\n");
		      printf("W25Q1024_ID: 0XEF20\r\n");
	     }


	     if(cmd==2) //Write one page
	     {
	    	 cmd = 0;

	       	   for(uint32_t i=0;i<page_byte_size;i++)
	       	   {
	       		  sdbuffer[i]=i;
	       	   }

	       	  Flash_Access_Addr = 0;
	       	  W25QXX_Write(sdbuffer, Flash_Access_Addr, page_byte_size);
	       	  printf("Write to W25Q6XX done!\r\n");
	     }

	     if(cmd==3)//Read one page
	     {
	    	 cmd = 0;

	    	 memset(sdbuffer, 0, page_byte_size);
	    	 printf("Start to read W25QXX......\r\n");

	    	 Flash_Access_Addr = 0;
	    	 W25QXX_Read(sdbuffer, Flash_Access_Addr, page_byte_size);

	    	 for(uint32_t i=0; i<page_byte_size; i++)
	    	 {
                printf("%d ", sdbuffer[i]);

	    	 }
	    	 printf("\r\n");

	     }

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Supply configuration update enable
  */
  HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);

  /** Configure the main internal regulator output voltage
  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}

  __HAL_RCC_SYSCFG_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0);

  while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 4;
  RCC_OscInitStruct.PLL.PLLN = 60;
  RCC_OscInitStruct.PLL.PLLP = 2;
  RCC_OscInitStruct.PLL.PLLQ = 2;
  RCC_OscInitStruct.PLL.PLLR = 2;
  RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
  RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
  RCC_OscInitStruct.PLL.PLLFRACN = 0;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2;
  RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief Peripherals Common Clock Configuration
  * @retval None
  */
void PeriphCommonClock_Config(void)
{
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

  /** Initializes the peripherals clock
  */
  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_CKPER;
  PeriphClkInitStruct.CkperClockSelection = RCC_CLKPSOURCE_HSI;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI2_Init(void)
{

  /* USER CODE BEGIN SPI2_Init 0 */

  /* USER CODE END SPI2_Init 0 */

  /* USER CODE BEGIN SPI2_Init 1 */

  /* USER CODE END SPI2_Init 1 */
  /* SPI2 parameter configuration*/
  hspi2.Instance = SPI2;
  hspi2.Init.Mode = SPI_MODE_MASTER;
  hspi2.Init.Direction = SPI_DIRECTION_2LINES;
  hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi2.Init.NSS = SPI_NSS_SOFT;
  hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
  hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi2.Init.CRCPolynomial = 0x0;
  hspi2.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
  hspi2.Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  hspi2.Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA;
  hspi2.Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  hspi2.Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  hspi2.Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  hspi2.Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  hspi2.Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  hspi2.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_DISABLE;
  hspi2.Init.IOSwap = SPI_IO_SWAP_DISABLE;
  if (HAL_SPI_Init(&hspi2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI2_Init 2 */

  /* USER CODE END SPI2_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET);

  /*Configure GPIO pin : PB12 */
  GPIO_InitStruct.Pin = GPIO_PIN_12;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
	if(huart==&huart1)
	{
		cmd = uart1_rx[0];
		HAL_UART_Receive_IT(&huart1, uart1_rx, 1);
	}

}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STM32例程测试

串口指令0x01测试效果如下:
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第17张图片

串口指令0x02测试效果如下:

STM32存储左右互搏 SPI总线读写FLASH W25QXX_第18张图片
串口指令0x03测试效果如下:
STM32存储左右互搏 SPI总线读写FLASH W25QXX_第19张图片

STM32例程下载

STM32H750VBT6读写W25QXX例程下载

–End–

你可能感兴趣的:(STM32,STM32博客,SPI,FLASH,W25Q,W25QXX,W25Q64,W25Q128)