- 英伟达靠什么支撑起了4万亿?AI泡沫还能撑多久?
英伟达市值突破4万亿美元,既是AI算力需求爆发的直接体现,也暗含市场对未来的狂热预期。其支撑逻辑与潜在风险并存,而AI泡沫的可持续性则取决于技术、商业与地缘政治的复杂博弈。⚙️一、英伟达4万亿市值的核心支撑因素技术垄断与生态壁垒硬件优势:英伟达GPU在AI训练市场占有率超87%,H100芯片的FP16算力达1979TFLOPS,领先竞品3-5倍。CUDA生态:400万开发者构建的软件护城河,成为A
- PaddleOCR 快速开始
张欣-男
PaddlePaddlePaddleOCROCR
1.安装1.1安装PaddlePaddle#GPUcudapipinstallpaddlepaddle-gpu#CPUpipinstallpaddlepaddle1.2安装PaddleOCRwhl包pipinstallpaddleocr2.便捷使用2.1命令行使用2.1.1中英文模型检测+方向分类器+识别全流程:–use_angle_clstrue设置使用方向分类器识别180度旋转文字,–use_
- 非欧空间计算加速:图神经网络与微分几何计算的GPU优化(流形数据的内存布局优化策略)
九章云极AladdinEdu
空间计算神经网络人工智能gpu算力算法java开发语言
一、非欧空间计算的革命性意义与核心挑战在三维形状分析、社交网络建模、分子动力学模拟等领域,非欧几里得空间数据(流形数据)的处理正推动人工智能技术向更复杂的几何结构迈进。传统欧式空间优化方法在处理流形数据时面临根本性局限:黎曼度量导致距离计算失效、局部坐标系动态变化引发内存访问模式混乱、曲率变化影响并行计算效率。本文提出基于分块流形存储(BlockedManifoldStorage,BMS)与层次化
- 核心板:嵌入式系统的核心驱动力
MYZR1
核心板人工智能SSD2351
核心板(CoreBoard)作为嵌入式系统开发的核心组件,已成为现代电子设备智能化的重要基石。这种高度集成的电路板将处理器、内存、存储和基本外设接口浓缩在一个紧凑的模块中,为各类智能设备提供强大的"大脑"。核心板的技术特点核心板通常采用先进的系统级封装(SiP)技术,在微小空间内集成了CPU/GPU、DDR内存、Flash存储以及电源管理单元。这种设计不仅大幅减小了体积,还提高了系统可靠性。以常见
- Unity_UI_NGUI_DrawCall
BuHuaX
Unityunityui游戏引擎c#游戏程序
Unity_UI五、NGUI进阶2.DrawCall相关2.1DrawCall的概念DrawCall定义:字面理解:DrawCall就是"绘制呼叫"的意思,表示CPU(中央处理器)通知GPU(图形处理器-显卡)开始渲染概念定义:DrawCall是CPU(处理器)准备好渲染数据(包括顶点、纹理、法线、Shader等等),然后告知GPU(图形处理器-显卡)开始渲染(将命令放入命令缓冲区)的命令简单来说
- 利用Gpu训练
兮℡檬,
深度学习人工智能
方法一:分别对网络模型,数据(输入,标注),损失函数调用.cuda()网络模型:iftorch.cuda.is_available():net=net.cuda()数据(训练和测试):iftorch.cuda.is_available():imgs=imgs.cuda()targets=targets.cuda()损失函数:iftorch.cuda.is_available():loss_fn=l
- Tensorflow-gpu运行时报错Non-OK-status: GpuLaunchKernel
GEM的左耳返
pythontensorflow深度学习python
Tensorflow-gpu运行时报错Non-OK-status:GpuLaunchKernel(FillPhiloxRandomKernelLaunch,num_blocks,block_size,0,d.stream(),gen,data,size,dist)status:Internal:invaliddevicefunctionFatalPythonerror:Aborted说明你安装的C
- 【科研绘图系列】R语言绘制边际云雨图散点图
生信学习者1
SCI科研绘图系列(2024版)r语言数据可视化
文章目录介绍加载R包数据下载导入数据数据预处理画图系统信息参考介绍【科研绘图系列】R语言绘制边际云雨图散点图加载R包library(tidyverse)library(ggplot2)library(ggpubr)library(ggpmisc)library(gghalves)library(aplot
- 路口实时检测 30FPS+:陌讯抗遮挡算法实测
2501_92488070
算法计算机视觉视觉检测边缘计算智慧城市
开篇痛点:复杂路口的视觉识别困境在城市交通治理中,行人闯红灯行为检测一直是智能监控的难点。传统视觉算法在实际部署中常面临三重挑战:强光/逆光环境下目标特征丢失导致的漏检率超20%;行人与非机动车遮挡场景下误判率高达15%;普通GPU设备上难以维持25FPS以上的实时性[3]。某二线城市交管部门曾反馈,基于开源模型的系统每月产生超3000条无效告警,严重消耗人力核查资源。这些问题的核心在于传统单模态
- 如何解决 undetected_chromedriver 启动慢问题
小马哥编程
chromeseleniumui
要解决undetected_chromedriver启动慢的问题,可以从以下几个方面优化配置和代码:1.指定本地Chrome二进制路径避免自动搜索Chrome路径,直接指定位置:driver=uc.Chrome(browser_executable_path=r'C:\ProgramFiles\Google\Chrome\Application\chrome.exe')2.禁用GPU和沙盒(关键优
- vLLM专题(三)-快速开始
AI专题精讲
大模型专题系列人工智能
本指南将帮助您快速开始使用vLLM执行:离线批量推理使用OpenAI兼容服务器进行在线服务1.先决条件操作系统:LinuxPython:3.9–3.122.安装如果您使用的是NVIDIAGPU,您可以直接使用pip安装vLLM。建议使用uv,一个非常快速的Python环境管理器,来创建和管理Python环境。请按照文档安装uv。安装uv后,您可以创建一个新的Python环境,并使用以下命令安装vL
- XCZU4EV-1FBVB900E Xilinx FPGA AMD Zynq UltraScale+ MPSoC EV(Embedded Vision)
XINVRY-FPGA
arm开发fpga开发fpga嵌入式硬件硬件工程计算机视觉硬件架构
XCZU4EV-1FBVB900EXCZU4EV‑2FBVB900E属于AMD(Xilinx)ZynqUltraScale+MPSoCEV(EmbeddedVision)系列,集成四核Arm®Cortex‑A53应用处理器、双核Cortex‑R5F实时处理器与Mali‑400MP2片上GPU,辅以强大的可编程逻辑和海量DSP引擎。该器件面向视频嵌入式视觉、网络通信、工业自动化和高级数据处理等对图形
- 数字经济时代全产业链详解
数字经济全产业链概述数字经济全产业链涵盖从底层技术到终端应用的完整生态,包括基础技术层、核心产业层、融合应用层和支撑服务层。以下是详细拆解:基础技术层1.硬件基础设施芯片与半导体:CPU、GPU、AI芯片(如NPU)等,支撑算力需求。通信设备:5G基站、光纤网络、卫星互联网等。数据中心:云计算服务器、边缘计算节点、绿色数据中心(如液冷技术)。2.软件与平台操作系统:鸿蒙、Windows、Linux
- 存算一体架构或成为AI处理器技术发展关键
神州问学
人工智能架构gpu算力算法语言模型
©作者|坚果来源|神州问学引言马斯克巨资60亿美元打造的“超级算力工场”,通过串联10万块顶级NVIDIAH100GPU,不仅震撼了AI和半导体行业,促使英伟达股价应声上涨6%,还强烈暗示了AI大模型及芯片需求的急剧膨胀。这一行动不仅是马斯克对AI未来的大胆押注,也成为了全球企业加速布局AI芯片领域的催化剂,预示着一场科技革新竞赛的全面升级,各方竞相提升算力,争夺AI时代的战略高地。观察近期Bla
- 下一代AI芯片设计的五大革命性突破:从架构创新到能效比跃迁——解析存算一体、Chiplet与光子计算的产业实践
像素笔记
杂谈单片机人工智能gpu算力Chiplet硬件架构
一、引言:AI算力竞赛进入“纳米级战争”2024年,全球AI芯片市场规模突破800亿美元,但传统冯·诺依曼架构的“内存墙”问题愈发凸显。英伟达H100GPU的算力虽达4PetaFLOPS,但其实际能效比仅有15%,大量功耗消耗在数据搬运而非计算本身(数据来源:ISSCC2024报告)。与此同时,特斯拉Dojo超算通过定制化架构,将训练成本降低至行业平均水平的1/5。本文将深入剖析AI芯片设计的五大
- 使用vllm创建相同模型的多个实例,使用nginx进行负载均衡,提高模型吞吐量
背景要提高vllm部署的大模型吞吐量,可以从显存利用率优化、多实例部署、参数调优和流程优化等多个维度入手,以下是具体建议:一、提高gpu-memory-utilization的效果与操作gpu-memory-utilization控制vllm预分配的GPU内存比例(默认0.9),当前值0.35预留了过多显存,是吞吐量低的重要原因。提升空间:合理提高该值可显著增加批处理能力。例如从0.35提升到0.
- ✨零基础手把手|Docker+vLLM极速部署OpenAI风格API:5分钟4卡GPU推理+避坑指南+完整镜像配置
杨靳言先
pythondockervllm部署
一、Docker基础命令查看容器状态Bashdockerps#查看运行中的容器dockerps-a#查看所有容器(包括已停止的)查看镜像列表Bashdockerimages#列出本地所有镜像二、镜像与容器操作镜像打包为.tar文件Bashdockersave-o#将镜像导出为.tar文件#示例:dockersave-omy_image.tarvllm/vllm-openai:v0.8.4打包多个镜
- ERNIE-4.5-0.3B 实战指南:文心一言 4.5 开源模型的轻量化部署与效能跃升
当行业还在为千亿参数模型的算力消耗争论不休时,百度文心一言4.5开源版本以颠覆性姿态撕开了一条新赛道。2025年6月30日,文心一言4.5系列模型正式开源,其中ERNIE-4.5-0.3B这款仅3亿参数的轻量模型,为破解大模型产业落地的三大困局提供了全新方案:算力门槛:从千万级GPU集群降至消费级单卡部署成本控制:企业私有化部署成本降至传统方案的1/10效率平衡:在保持智能水平的同时实现极致轻量化
- 深度学习GPU工作站主机选择指南:以RTX 5090为核心的2025年配置策略
前言2025年,随着NVIDIARTX5090的发布,深度学习硬件领域迎来了革命性的变化。这款基于Blackwell架构的旗舰GPU不仅在游戏领域表现卓越,更在AI和深度学习应用中展现出前所未有的性能实力。对于深度学习研究者和工程师而言,RTX5090的出现重新定义了工作站配置的标准,其32GBGDDR7显存、768个第五代TensorCore以及大幅提升的计算性能,为大规模模型训练和推理提供了全
- 深度学习-数据操作
数据操作首先,我们来介绍n维数组,也称为张量(tensor)。GPU很好地支持加速计算,而NumPy仅支持CPU计算;并且张量类支持自动微分。这些功能使得张量类更适合深度学习。张量表示一个由数值组成的数组,这个数组可能有多个维度。具有一个轴的张量对应数学上的向量(vector);具有两个轴的张量对应数学上的矩阵(matrix);具有两个轴以上的张量没有特殊的数学名称。上图分别是1维到5维的张量的表
- 第十四章:AI的数据“集装箱”:彻底搞懂Tensor的Batch与维度
爱分享的飘哥
AI新纪元:120日觉醒计划TensorPyTorchBatchSize数据处理AI基础深度学习教程
AI数据集中箱前言:为什么AI从不“零售”,总是“批发”?1:Batch(批次)——GPU的“灵魂伴侣”1.1单个处理vs.批量处理:CPU与GPU的思维差异1.2DataLoader:PyTorch的“自动化装箱员”2:维度的语言——破译[B,L,D]的含义2.1[L,D]:一个句子的“二维画像”2.2[B,L,D]:一批句子的“三维魔方”2.3用代码直观感受维度的增加3:追踪Tensor的“变
- 模型剪枝(分析)
yc_hu
剪枝python机器学习
1.函数入口与设备初始化defget_layer_level_pruning_rate(args):device=torch.device("cuda"iftorch.cuda.is_available()else"cpu")功能:检测可用设备(优先使用GPU),为后续模型加载做准备。2.数据加载与评估函数定义train_loader,val_loader,test_loader,criterio
- 【WebGPU学习杂记】数学基础拾遗(1)三角学基础
本文主要记录一些基础数学中的关键术语、公式、定义,方便查阅并基于此拓展和补充。部分内容需要有函数基础。主要目的是熟悉这些公式即可,如果能够手推公式效果最理想(增加对公式的信任感)。基础概念内角、外角、补角、对边、临边内角、外角和均为π\piπ、任意两边长度加和>第三边相似:三边对应成比例两边对应成比例且夹角相等两角对应角度相等全等:三边相等、两边对应相等且夹角相等、双边角对应相等且夹边对应相等单位
- 2023年阿里云服务器补贴活动,新品u1系列云服务器限时低至3.8折
阿里云最新优惠和活动汇总
阿里云2023年推出云服务器补贴活动,新品u1系列云服务器限时低至3.8折,还有热卖s6/c6/g6/r6系列云服务器特惠和GPU云服务器包月4折,半年3.5折,1-2年3折优惠,新用户场景组合购低至3折起,老用户场景组合购低至7折起,老用户回归新购专享ECS云产品低至3.6折起等众多活动内容,让新老用户以最实惠的价格购买到自己想要的云服务器或者组合套餐。活动详细内容如下文所示。云服务器百亿补贴活
- OpenCV结合深度学习进行图像分类
香蕉可乐荷包蛋
#OpenCVopencv深度学习分类
文章目录1.支持的深度学习框架和模型格式2.模型加载方式加载预训练模型示例:3.图像预处理流程4.前向传播与推理5.结果解析与后处理6.性能优化技巧启用GPU加速:批量处理:代码示例在资源中有上传1.支持的深度学习框架和模型格式OpenCV的DNN模块支持多种主流深度学习框架训练的模型:TensorFlow:支持冻结图(.pb)和SavedModel格式Caffe:支持.prototxt和.caf
- ffmpeg 调用gpu进行转码
wcy10086
ffmpeg
ffmpeg-hwaccelcuvid-irtsp://admin:
[email protected]/h264/ch1/main/av_stream-c:vh264_nvencD://nginx-1.20.2//nginx-1.20.2//html//m3u8//136.m3u8
- k8s通过NUMA亲和分配GPU和VF接口
aashuii
kubernetes容器云原生
问题一般情况下,sriov插件和gpu分配插件是单独工作的,网卡和GPU没有根据连接关系分配如果一个节点起了多个容器,会造成GPU和网卡的通信瓶颈修改如果一个点起两个容器,可以按照NUMA亲和来分配修改kubelet配置文件/var/lib/kubelet/config.yamltopologyManagerPolicy选择restrictedtopologyManagerPolicy:singl
- 光影双生:实时与离线渲染的共生竞合图景
渲吧-云渲染
3d
曾经,渲染是场漫长等待的幕后魔法,耗时数小时甚至数日方能呈现一帧精妙画面。如今,实时渲染以其“即时可见”的魅力正重塑视觉创作格局。然而,这并非一场简单的替代,实时渲染与离线渲染正走向深度共生与博弈的平衡。实时渲染:速度与交互的跃升技术洪流正强力驱动实时渲染的进化。GPU算力的指数级增长,从固定管线到高度可编程渲染管线的革命性跨越,为实时图形解锁了前所未有的自由度。NVIDIAOptiX等光线追踪引
- 华为OD机试 任务调度
梦想橡皮擦
本期题目:任务调度题目为了充分发挥GPU算力,需要尽可能多的将任务交给GPU执行,现在有一个任务数组,数组元素表示在这1s内新增的任务个数,且每秒都有新增任务。假设GPU最多一次执行n个任务,一次执行耗时1s,在保证GPU不空闲的情况下,最少需要多长时间执行完成。输入第一个参数为GPU最多执行的任务个数,取值范围1~10000;第二个参数为任务数组的长度,取值范围1~10000;第三个参数为任务数
- 【服务器】 MCTP Over PCIe 的内容、用途、工作原理及硬件设计注意事项
MCTPOverPCIe的用途、工作原理及硬件设计注意事项MCTP(ManagementComponentTransportProtocol)是一种用于管理系统组件间通信的协议,而“MCTPOverPCIe”特指该协议通过PCIExpress(PCIe)总线实现数据传输。它广泛应用于服务器、数据中心和嵌入式系统中,用于监控和控制硬件设备(如CPU、GPU、SSD等)。MCTP协议规范主要内容1.协
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不