- 深入详解:决策树在医学影像分割特征选择中的应用与实现
猿享天开
决策树算法机器学习人工智能
深入详解:决策树在医学影像分割特征选择中的应用与实现决策树(DecisionTree)作为一种经典的机器学习算法,以其简单、直观和可解释性强的特点,在医学影像分割的特征选择中扮演了重要角色。医学影像分割(如分割脑肿瘤、肝脏、肺结节等)需要从高维影像数据中提取关键特征,以提升分割模型的精度和效率。决策树通过构建树形结构,筛选对分割任务最重要的特征,降低数据维度,同时提供可解释的规则。本文将从原理、实
- Day 20:奇异值SVD分解
Review上一节主要学习了几种特征选择的具体方法,包含:方差筛选皮尔逊相关系数筛选lasso筛选树模型重要性SHAP重要性递归特征消除REF其目的是为了从大量的特征中选择有效的的特征,去除冗余甚至是噪声的非必要特征,从而构建出高质量的数据集。Today今天由矩阵的SVD分解讲起,并引申到实际的数据处理应用中。SVDSVD(奇异值分解)是线性代数中的一个矩阵分解技术。对于任意实数矩阵A∈Rm×nA
- 机器学习算法解析:XGBoost与LightGBM
AI天才研究院
AI人工智能与大数据AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习算法解析:XGBoost与LightGBM作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:XGBoost,LightGBM,高效特征选择,并行化训练,自动调参,弱分类器集成1.背景介绍1.1问题的由来随着数据科学和人工智能技术的发展,越来越多的问题需要利用机器学习算法进行解决。传统的一维决策树虽然直观且易于理解,但在面对高维度数据集时
- Python 中 scikit - learn 的 Lasso 回归
PythonAI编程架构实战家
Python人工智能与大数据Python编程之道python回归kotlinai
Python中scikit-learn的Lasso回归关键词:Lasso回归、线性模型、特征选择、正则化、scikit-learn、机器学习、Python摘要:本文深入探讨了Python中scikit-learn库的Lasso回归实现。Lasso(LeastAbsoluteShrinkageandSelectionOperator)是一种线性回归的变体,它通过L1正则化实现特征选择和模型简化。我们
- 基于SVm和随机森林算法模型的中国黄金价格预测分析与研究
python编程狮
支持向量机算法随机森林python机器学习人工智能
摘要本研究基于回归模型,运用支持向量机(SVM)、决策树和随机森林算法,对中国黄金价格进行预测分析。通过历史黄金价格数据的分析和特征工程,建立了相应的预测模型,并利用SVM、决策树和随机森林算法进行训练和预测。首先,通过对黄金价格时间序列数据的探索性分析,发现黄金价格存在一定的趋势和季节性变化。随后,进行了数据预处理和特征选择,为建立准确的预测模型奠定了基础。分别使用SVM、决策树和随机森林算法建
- 旋转目标检测:Deep Spatial Feature Transformation for Oriented Aerial Object Detection【方法解析】
沉浸式AI
《AI与SLAM论文解析》人工智能计算机视觉旋转目标检测
DeepSpatialFeatureTransformationforOrientedAerialObjectDetection目录DeepSpatialFeatureTransformationforOrientedAerialObjectDetection摘要关键词引言相关工作旋转对齐模块特征对齐方法旋转对齐模块特征选择模块摘要航空图像中的目标检测在计算机视觉领域引起了广泛关注。不同于自然图像
- 脑电分析入门指南:信号处理、特征提取与机器学习
Ao000000
信号处理机器学习人工智能
脑电分析入门指南一、为什么要研究脑电1.课题目标(解决什么问题)2.输入与输出二、脑电分析的整体流程三、每一步详解1.数据采集2.预处理3.特征提取4.特征选择/降维5.分类与识别四、研究过程中遇到的挑战与解决方法五、学习感受一、为什么要研究脑电1.课题目标(解决什么问题)本课题旨在通过对脑电(EEG)的采集与分析,提取有用的神经信息,实现对某类脑状或行为的识别/预测/评估。例如:情绪识别、疾病诊
- Matlab实现特征选择算法中Relief-F算法
guygg88
大数据
特征选择算法中Relief-F算法使用Matlab的实现GetRandSamples.m,1719ReliefF.m,1034Untitled.m,1238data.txt,23637dataregress.m,210
- 【机器学习笔记 Ⅲ】4 特征选择
巴伦是只猫
机器学习机器学习笔记人工智能
特征选择(FeatureSelection)系统指南特征选择是机器学习中优化模型性能的关键步骤,通过筛选最相关、信息量最大的特征,提高模型精度、降低过拟合风险并加速训练。以下是完整的特征选择方法论:1.特征选择的核心目标提升模型性能:去除噪声和冗余特征,增强泛化能力。降低计算成本:减少训练和预测时间。增强可解释性:简化模型,便于业务理解。2.特征选择方法分类(1)过滤法(FilterMethods
- Mint密室 · 猫猫狐狐的“特征选择”囚室逃脱
Gyoku Mint
猫猫狐狐的小世界人工智能AI修炼日记人工智能深度学习python算法transformer
摘要:这一篇是猫猫狐狐被锁进“特征选择”密室的一场逃生剧本,用冒险叙事把Filter、Wrapper、Embedded三大特征选择法串进情节,轻松解释维度诅咒和特征冗余,还留了一个“尾巴带特征”的彩蛋,稳稳贴你3000字不溢锅。【开场·她们被困在特征选择密室】猫猫醒来的时候,整条尾巴都绕在自己脚边,还带着点抖:“狐狐……咱好像,被锁住了喵……”狐狐睁开眼,四周墙面刻满了灰白色的标签——Featur
- 【机器学习|学习笔记】特征选择(Feature Selection)和特征提取(Feature Extraction)都是用于降维、提升模型性能和泛化能力的重要手段。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记人工智能神经网络
【机器学习|学习笔记】特征选择(FeatureSelection)和特征提取(FeatureExtraction)都是用于降维、提升模型性能和泛化能力的重要手段。【机器学习|学习笔记】特征选择(FeatureSelection)和特征提取(FeatureExtraction)都是用于降维、提升模型性能和泛化能力的重要手段。文章目录【机器学习|学习笔记】特征选择(FeatureSelection)和
- 机器学习笔记:MATLAB实践
techDM
机器学习笔记matlabMatlab
在机器学习领域,MATLAB是一种功能强大且广泛使用的工具,它提供了许多内置函数和工具箱,方便开发者进行各种机器学习任务。本文将介绍一些常见的机器学习任务,并提供相应的MATLAB源代码示例。数据预处理在进行机器学习之前,通常需要对原始数据进行预处理。这包括数据清洗、特征选择、特征缩放和数据划分等步骤。%导入数据data=readmatrix('data.csv');%数据清洗cleaned_da
- 《dlib库中的聚类》算法详解:从原理到实践
A小庞
算法算法聚类数据挖掘机器学习c++
一、dlib库与聚类算法的关联1.1dlib库的核心功能dlib是一个基于C++的机器学习和计算机视觉工具库,其聚类算法模块提供了多种高效的无监督学习工具。聚类算法在dlib中主要用于:数据分组:将相似的数据点划分为同一簇。特征分析:通过聚类结果发现数据潜在的结构。降维辅助:结合聚类结果进行特征选择或数据压缩。dlib支持的经典聚类算法包括K-Means和ChineseWhispers,适用于图像
- 22种创新思路!今年必将是特征选择爆发的一年
小唯啊小唯
人工智能注意力机制特征选择
2025深度学习发论文&模型涨点之——特征选择特征选择是机器学习和数据挖掘领域中一个非常重要的步骤。它指的是从原始特征集合中挑选出对目标变量有较强预测能力的特征子集。在实际的数据集中,往往包含众多特征,但并非所有特征都对模型的性能有正面影响。例如在房价预测任务中,原始特征可能包括房屋的面积、房间数量、所在小区、周边配套设施等众多内容。通过特征选择,可以剔除一些无关的或者冗余的特征,比如可能存在的重
- “相关分析”
不解风情的老妖怪哎
数据分析学习笔记数据分析大数据
一、相关分析的核心概念1.定义(1)衡量两个或多个变量之间的线性或单调关系的强度和方向(正/负相关)。(2)注意:相关性≠因果关系。2.相关系数的范围(1)取值范围为[-1,1]:1:完全正相关-1:完全负相关0:无线性相关3.应用场景(1)探索变量间的潜在关系(如收入与消费水平、广告投入与销售额)。(2)辅助特征选择(如剔除高度相关的变量,避免多重共线性)。二、常用相关系数及方法1.Pearso
- 决策树算法
雨巷码行人
机器学习算法决策树机器学习
文章目录基本概念与原理决策树定义两种理解视角模型构建三要素1.特征选择(1)信息增益(ID3算法)(2)信息增益比(C4.5算法)(3)基尼指数(CART算法)2.决策树生成3.决策树剪枝(1)预剪枝(Pre-pruning)(2)后剪枝(Post-pruning)决策树算法对比CART回归树生成Scikit-learn实现分类树CART决策树-回归树决策树优劣势总结基本概念与原理决策树定义树形结
- 解锁决策树:数据挖掘的智慧引擎
目录一、决策树:数据挖掘的基石二、决策树原理剖析2.1决策树的基本结构2.2决策树的构建流程2.2.1特征选择2.2.2数据集划分2.2.3递归构建三、决策树的实践应用3.1数据准备3.2模型构建与训练3.3模型评估四、决策树的优化策略4.1剪枝策略4.1.1预剪枝4.1.2后剪枝4.2集成学习五、案例分析5.1医疗诊断案例5.2金融风险评估案例六、总结与展望一、决策树:数据挖掘的基石在当今数字化
- 无监督学习中的特征选择与检测(FSD)在医疗动线流程优化中的应用
Allen_Lyb
医疗高效编程研发学习健康医疗架构人工智能
无监督学习中的特征选择与检测(FeatureSelectionandDetection,FSD)算法在医疗动线流程优化中具有重要的应用价值,尤其适用于从海量、复杂且缺乏明确标签的医疗行为数据中自动挖掘关键模式和瓶颈。以下是如何编程实现这种应用的思路和步骤:引言医疗动线流程优化是提升医疗机构运营效率、改善患者体验的关键领域。传统的流程优化方法往往依赖于人工观察和经验分析,难以从海量、复杂且缺乏明确标
- 机器学习与深度学习22-数据预处理
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.常见的数据质量问题2.归一化和标准化3.特征选择和特征提取4.独热编码前文回顾上一篇文章地址:链接1.常见的数据质量问题在数据预处理过程中,常见的数据质量问题包括缺失值、异常值和重复数据。以下是这些问题的详细描述以及处理方法:缺失值:缺失值是指数据表中某些单元格或字段缺乏数值或信息的情况处理方法:删除包含缺失值的行:如果缺失值数量较少,可以考虑删除包含缺失值的行,但这可能导致信息损
- 机器学习中的数据预处理:清洗、转换与标准化
CarlowZJ
AI+大模型微调机器学习人工智能
目录一、前言二、数据预处理的基本概念(一)数据预处理的定义(二)数据预处理的重要性三、数据预处理的常用方法(一)数据清洗(二)特征选择(三)特征转换(四)数据标准化四、数据预处理的代码示例(一)环境准备(二)数据加载与清洗(三)特征标准化(四)特征选择五、数据预处理的应用场景(一)分类任务(二)回归任务(三)时间序列预测六、数据预处理的注意事项(一)数据质量(二)特征选择方法的选择(三)标准化方法
- 机器学习中常见搜索算法
机器学习中的搜索算法主要用于优化模型参数、特征选择、超参数调优或近似最近邻搜索等任务。常见的搜索算法分类及典型方法如下1.参数/超参数搜索算法(1)网格搜索(GridSearch)原理:遍历所有可能的参数组合,选择最优解。优点:简单、全局最优。缺点:计算成本高,维数灾难。工具:sklearn.model_selection.GridSearchCVfromsklearn.model_selecti
- 数据清洗——利用机器学习方法进行健康智能诊断
丢不掉的喜欢
机器学习人工智能
1.数据预处理与质量控制:目的:确保数据的完整性和准确性,为后续的分析和建模提供可靠的基础。具体操作:通过识别并填补缺失值,解决数据不完整的问题,减少因数据缺失导致的偏差。2.探索性数据分析(EDA):目的:理解数据的分布特性、趋势以及不同特征之间的关系,为后续建模提供洞察。具体操作:通过分组对比不同年龄、性别的人群中患病占比,揭示潜在的患病风险因素,为模型特征选择提供依据。3.分类建模与评估:目
- 打卡第二十天
Shining_Jiang
机器学习人工智能
方差筛选方差筛选是一种基于特征方差的特征选择方法。通过计算每个特征的方差,剔除方差较小的特征,因为这些特征对模型的贡献较小。皮尔逊相关系数筛选皮尔逊相关系数用于衡量特征与目标变量之间的线性相关性。通过计算每个特征与目标变量的相关系数,选择相关性较高的特征。Lasso筛选Lasso回归是一种带有L1正则化的线性回归方法,能够通过正则化系数将某些特征的权重压缩为零,从而实现特征选择。树模型重要性树模型
- Python实战笔记-常用知识点
MMGNFT
K总编程笔记
一、自学Python的最终的目标是a,实现自动化办公b,实现数据的爬取c,实现基本的数据分析(SEMMA)S:Sample(收集数据)常用手段:问卷调查,数据库查询,实验室实验,仪器设备的记录E:Explore(数据探索)探索方向:离散变量的分布比例,连续变量的分布形态,数据的异常和缺失,特征选择M:Modify(数据修正)常用修正方法:数据类型的转换,数据的一致性处理,异常值和缺失值的处理,数据
- 决策树-机器学习
ma_ant
机器学习算法决策树机器学习
一.决策树简介1.什么是决策树决策树是一种树形结构,树中每个内部节点表示一个特征上的判断,每个分支代表一个判断结果的输出,每个叶子节点代表一种分类结果。它主要用于分类和回归任务,通过递归地分裂数据集构建树状结构。2.决策树构建过程(三要素)①特征选择:选择较强分类能力的特征②决策树的生成:根据选择的特征生成决策树③决策树的剪枝:决策树也容易过拟合,采用剪枝的方法缓解过拟合3.优缺点及应用优点:可解
- 特征分析工程化
梨V_v
文献深度学习人工智能神经网络笔记
scikit功能Python中的特征选择存储库scikit-feature。scikit-feature是一个开源的Python特征选择库,由亚利桑那州立大学数据挖掘与机器学习实验室开发。它基于一个广泛使用的机器学习包scikit-learn以及两个科学计算包Numpy和Scipy构建。scikit-feature包含大约40种流行的特征选择算法,包括传统的特征选择算法以及一些结构化和流式特征选择
- 机器学习回归预测中预处理的特征工程
Studying 开龙wu
机器学习理论(分类回归)机器学习回归人工智能
1.项目目标和数据分析2.数据预处理3.特征构造与生成4.特征选择5.时间序列回归预测-——引用风速预测案列简单说明 在机器学习回归预测中,特征工程是至关重要的环节,它能显著提升模型的性能和预测准确性。这里从一个项目开始分析到最终确定特征的思考,本文章先主要理论说明,后续会对每一个方法和用法进行单独说明和代码示例。说明的涉及领域比较多,方法都可以用代码实现。一、项目目标和数据分析1.明确业务目标
- 自然语言处理学习路线
熬夜造bug
自然语言处理(NLP)自然语言处理学习人工智能python
学习目标NLP系统知识(从入门到入土)学习内容NLP的基本流程:自然语言处理学习路线(1)——NLP的基本流程-CSDN博客语料预处理:(待更)特征工程之向量化(word——>vector):(待更)特征工程之特征选择:(待更)序列网络在NLP领域的应用(RNN、GRU、LSTM):(待更)预训练模型(ELMO、Bert、T5、GPT、Transformer):(待更)文本分类(Fasttext、
- 基于线性回归的数据预测
所见即所得11111
线性回归算法回归
1.自主选择一个公开回归任务数据集(如房价预测、医疗数据、空气质量预测等,可Kaggle)。2.数据预处理:完成标准化(Normalization)、特征选择或缺失值处理等步骤。3.使用线性回归模型进行建模。采用80%数据用于训练,20%用于测试,重复划分数据集并训练模型20次,记录每次结果(交叉验证)。4.输出平均均方误差(MSE)或平均绝对误差(MAE),并可选与其他模型(如决策树回归、岭回归
- sklearn基础教程:从入门到精通
洛秋_
机器学习
文章目录sklearn基础教程:从入门到精通一、sklearn简介二、安装与配置三、数据预处理数据导入数据清洗特征选择数据标准化与归一化四、常用模型介绍与应用线性回归逻辑回归决策树支持向量机K近邻算法随机森林集成学习五、模型评估与调优交叉验证网格搜索模型评估指标六、实战案例波士顿房价预测手写数字识别客户流失预测七、测试接口与详细解释单元测试接口测试八、总结个人博客【洛秋小站】洛秋资源小站【洛秋资源
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓