- 第二十二天(数据结构,无头节点的单项链表)
肉夹馍不加青椒
c语言数据结构
线性表:一个线性表里面可以是任意的数据元素,但是同一个线性表里面数据应该是同类型的1存在一个/唯一被称为第一个节点的节点2存在一个/唯一被称为最后一个节点的节点3除了第一个以外,每一个元素都有一个前驱节点4除了最后一个,每一个元素都有一个后继节点满足以上性质,这个表就被称为线性表数组就是一个线性表想实现线性表的保存,我们需要考虑下面的事情1元素要保存2元素与元素之间的序偶关系谁是前面的谁是后面的我
- AI模型训练中过拟合和欠拟合的区别是什么?
workflower
人工智能算法人工智能数据分析
在AI模型训练中,过拟合和欠拟合是两种常见的模型性能问题,核心区别在于模型对数据的学习程度和泛化能力:欠拟合(Underfitting)-定义:模型未能充分学习到数据中的规律,对训练数据的拟合程度较差,在训练集和测试集上的表现都不好(如准确率低、损失值高)。-原因:-模型结构过于简单(如用线性模型解决非线性问题);-训练数据量不足或特征信息不充分;-训练时间太短,模型尚未学到有效模式。-表现:训练
- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 【数据结构】--ArrayList与顺序表
bubu__
数据结构数据结构
文章目录1.线性表2.顺序表3.ArrayList简介4.MyArrayList的实现5.ArrayList使用5.1ArrayList的构造5.2ArrayList常见操作5.3ArrayList的遍历5.4ArrayList的扩容机制6.ArrayList的具体使用6.1简单的洗牌算法6.2杨辉三角1.线性表线性表(linearlist)是n个具有相同特性的数据元素的有限序列。线性表是一种在实
- AI心理学四层架构揭秘:语言模型为何“说谎“?
TGITCIC
AI-大模型的落地之道语言模型人工智能自然语言处理大模型国产大模型大模型落地
第一章神经层:代码编织的"脑电图"1.1注意力权重的量子跃迁当Claude3.5Haiku处理"达拉斯所在州的首府"这类问题时,其注意力权重图谱呈现出量子跃迁特征。研究团队通过归因图技术捕捉到:在输入"达拉斯"的瞬间,模型内部Texas节点的激活强度达到87.6%,首府概念节点同步飙升至79.3%。这种非线性激活模式与人类大脑的默认模式网络惊人相似。模型层级激活时序决策路径可解释性神经层300ms
- 网络的娱乐至死
17传播学金佩琦
作者写书的时间应该是电视文化方兴未艾的1985年,当时还没有看到网络的苗头,作者十分有预见性的提出了电视作为一种信息传递的媒体,将要给世界带来的巨大改变。电视作为一种传递信息的媒体,反过来影响了信息的内容。和书籍不一样,书籍具有线性阅读的结构,需要读者有很好的文化水平,逻辑理解能力,对某一问题的深入分析和关注,而电视创造的文化是快餐式的,不需要观众理解,也不给你理解的时间,信息是散乱的。我最喜欢的
- 计算机考研408真题解析(2023-09 深入解析散列表线性探测与惰性删除)
良师408
考研散列表数据结构408真题计算机考研
【良师408】计算机考研408真题解析(2023-09深入解析散列表线性探测与惰性删除)传播知识,做懂学生的好老师1.【哔哩哔哩】(良师408)2.【抖音】(良师408)goodteacher4083.【小红书】(良师408)4.【CSDN】(良师408)goodteacher4085.【微信】(良师408)goodteacher408特别提醒:【良师408】所收录真题根据考生回忆整理,命题版权归
- halcon知识:常见三种模板匹配方法总结
无水先生
Halcon高级应用Halcon中级实践计算机视觉图像处理
目录一、形状匹配模板(Shape_Based)1.1形状匹配常见的有四种情况1.2四种匹配的特点1.3一般形状匹配模板shape_model1.4线性变形匹配模板planar_deformable_model1.5局部变形模板1.6比例缩放末班匹配二、灰度匹配模板(Gray-Value-Based)2.1创建模板方法如下2.2匹配搜索操作2.3模板调整操作三、组合模板匹配(Component-Ba
- 【Python高阶开发】1. Pandas工业级时序数据处理实战:从振动传感器数据到轴承故障预警系统
AI_DL_CODE
pythonpandas时序数据处理振动传感器工业数据清洗特征工程
摘要:在工业设备健康监测中,振动传感器数据是评估设备状态的核心依据,但高频噪声干扰、数据传输缺失、多设备时间戳错位等问题严重影响分析准确性。本文基于PythonPandas构建工业级时序数据处理流水线,提出"时间校正-缺失填充-噪声过滤-特征提取"四步清洗法,针对工业场景设计专用策略:短时缺失采用线性插值、长时缺失标记异常,振动数据结合移动平均与Z-score检测保留真实特征。通过时域(峰值、峭度
- 数据结构核心知识总结:从基础到应用
算法练习生
数据结构数据结构学习笔记算法排序算法
数据结构核心知识总结:从基础到应用数据结构是计算机科学中组织和存储数据的核心方式,直接影响程序的性能和资源利用率。本文系统梳理常见数据结构及其应用场景,帮助读者构建清晰的知识体系。一、数据结构基础概念数据结构是数据元素之间逻辑关系的抽象表示,包含以下三要素:逻辑结构:数据元素间的抽象关系(集合/线性/树形/图状)存储结构:数据在内存中的物理存储方式(顺序/链式)操作集合:增删改查等基本操作二、常见
- 数据结构之顺序表&链表&栈
tryxr
数据结构顺序表链表栈
顺序表什么是listlist的使用线性表是什么顺序表是什么顺序表和线性表的关系顺序表和数组的区别List和ArrayList的关系如何自己模拟实现myArrayListArrayList的构造ArrayList的常见方法以下两种写法有什么区别ArrayListarrayList=newArrayListlist=newArrayList是什么意思返回值是List>是什么意思ArrayList实现杨
- 第2章:基础数据结构
芝麻开门-新的起点
算法那些事数据结构
本章我们将深入学习计算机科学中最核心、最基础的几种数据结构。掌握它们是构建高效算法的基石。我们将不仅学习它们的理论,更会亲手实现并分析其优劣。2.1数组(Array)与链表(LinkedList)2.1.1内容讲解1.数组(Array)数组是一种线性数据结构,它将相同类型的元素存储在连续的内存空间中。这使得数组具备一个强大的特性:可以通过索引(下标)在O(1)时间复杂度内随机访问任何元素。优点:随
- Android 五大布局之线性布局和相对布局
qq_41437225
Android五大布局之(一)线性布局和相对布局android布局线性布局相对布局
Android五大布局之线性布局和相对布局RelativeLayout的相关的属性相对布局第一类:属性值为true和false的:android:layout_centerHrizontal水平居中android:layout_centerVertial垂直居中android:layout_centerInparent相对于父元素完全居中android:layout_alignParentBott
- 【AI大模型:前沿】43、Mamba架构深度解析:为什么它是Transformer最强挑战者?
无心水
架构transformerMambaMamba架构AI大模型系统开发实战AI大模型高手开发AI大模型系统实战
Transformer架构自2017年诞生以来,一直是NLP、计算机视觉等领域的“统治级”模型架构。但随着序列长度需求的增长(如128K长文本处理、基因组学超长序列分析),其自注意力机制的O(n2)O(n^2)O(n2)计算复杂度成为难以逾越的瓶颈。2023年底,由AlbertGu和TriDao等人提出的Mamba架构,通过创新的“选择性状态空间模型(SelectiveSSM)”实现了线性复杂度(
- Leetcode力扣解题记录--第136题(查找单数)
不愧是你呀
Leetcodeleetcode算法数据结构
题目链接:136.只出现一次的数字-力扣(LeetCode)题目描述给你一个非空整数数组nums,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。示例1:输入:nums=[2,2,1]输出:1示例2:输入:nums=[4,1,2,1,2]输出:4示例3:输入:nums=[1]输出:1题目作
- 揭秘智能产品定价AI平台的优势,AI应用架构师为你详解
SuperAGI架构师的AI实验室
人工智能大数据ai
智能定价新范式:AI平台如何重塑产品定价策略——AI应用架构师深度剖析副标题:从算法原理到商业价值,全方位解读智能定价AI平台的架构优势与落地实践摘要/引言在数字化经济时代,产品定价已从传统的经验驱动转向数据驱动的精密科学。传统定价方法依赖人工分析、历史数据和直觉判断,面临三大核心痛点:响应滞后(无法实时捕捉市场波动)、精度有限(难以量化复杂变量间的非线性关系)、规模瓶颈(无法针对海量SKU或细分
- 【AcWing 840题解】模拟散列表
墩墩同学
散列表哈希算法算法
AcWing840.模拟散列表【题目描述】在查看解析之前,先给自己一点时间思考哦!【题解】这是一个经典的集合操作问题,可以使用哈希表来高效地实现集合的插入和查询操作。哈希表设计:哈希表的大小为N=200003,这样可以减少冲突的概率(选取质数作为哈希表的大小有助于减少哈希冲突)。通过哈希碰撞解决,采用线性探测法(即在发生冲突时逐步检查下一个位置),直到找到空位或匹配的位置。哈希表的初始值设为nul
- 奥斯卡“最佳赌片”,小人物复仇黑帮老大,主角后来成了九头蛇
8分电影
电影发展了一百多年,花哨的叙事技巧已经成为了影响观赏性的关键。尤其是黑色、悬疑电影,好像不用点非线性,闪回,平行交叉手法什么的,作品就会黯然失色。那以前的老电影按部就班地讲故事,是不是就彻底与时代脱节,沦为淘汰品了呢?1973年上映,在第46届奥斯卡夺下最佳影片等7项大奖的《骗中骗》明确说明,就算是讲求悬念和反转的片子,答案也是否定的。这部在豆瓣获得8.7分的《骗中骗》对犯罪类型片的影响广泛而深远
- 堆与优先队列:从原理到实现的高性能数据结构
rjewh88998
java算法数据结构
堆:隐藏在数组下的树形结构堆的本质是一种特殊的完全二叉树,但其物理存储方式却采用数组,这种“逻辑树形、物理线性”的设计,既兼顾了树的层次关系,又利用了数组的连续存储优势,大幅提升了访问效率。堆的结构特性:秩序井然的“层级社会”堆有两个核心特性,这也是它区别于普通二叉树的关键:结构性:堆是一棵完全二叉树。也就是说,除了最后一层,其他层的节点都被元素填满,且最后一层的节点从左到右依次排列,不会出现中间
- 数据结构第1问:什么是数据结构?
Swiler
数据结构数据结构算法
什么是数据结构数据结构指的是相互之间存在某种特定关系的数据元素的集合。"数据"则是指存在关系的数据元素的集合;“结构”则是指数据元素之间的特定关系,这种关系不仅体现在逻辑上,也体现在存储上,同时也包含对数据元素的具体操作。数据结构由数据元素集合,逻辑结构,存储结构,数据的运算三要素组成。eg:建立一张线性表,并用顺序存储的方式将表内数据元素存放在内存中,设计并实现对线性表的创建、修改、删除等操作。
- Language Models are Few-Shot Learners: 开箱即用的GPT-3(三)
新兴AI民工
深度网络/大模型经典论文详解语言模型gpt-3人工智能
Result前面的两个部分介绍了背景,模型的情况和一些测试的方法,这一章就是展示各种尺寸的模型,包括175B的GPT-3在各种任务下的测试情况了。power-law第三章一上来,就用了14不同尺寸的模型来验证这个cross-entropy的线性提升与模型尺寸的指数关系(从最小的100000个参数,一只上升到175B的GPT-3,从10的5次方一直测试到10的11次方),从更大的尺度上来验证这个结论
- YOLOv5激活函数替换与模型变体实验实战教程
机 _ 长
YOLO极致优化实战YOLO深度学习算法
YOLOv5激活函数替换与模型变体实验实战教程本教程面向已具备YOLOv5训练经验的开发者,系统讲解如何在YOLOv5中替换激活函数、构建模型变体,并结合本项目实际文件和命令,突出实用性和可操作性。内容涵盖激活函数原理、替换方法、配置文件讲解、训练实操、源码解读、实验对比与常见问题排查。完整代码见文末1.激活函数原理简介激活函数是深度神经网络中非线性建模的关键组件。常见激活函数包括:ReLU:简单
- 线性代数(6)——向量空间
Irene_hong
1、向量空间(VectorSpace)对于向量空间的维度:Example:=all2-dimrealvectors,如,,相当于一个x-y平面;=allvectorswith3components;=allcolumnvectorswithnrealcomponents;1.1子向量空间(Sub-spaceofVectorSpace)在乘法/加法运算下,子向量空间必须是封闭的,不能超出原向量空间;
- 机器学习算法(六)---逻辑回归
向云端UP
机器学习模型机器学习算法逻辑回归
目录一、逻辑回归1.1模型介绍1.2工作原理1.2.1对数几率模型1.2.2逻辑回归与Sigmoid函数1.3.3熵、相对熵与交叉熵1.3损失函数和优化算法1.3.1损失函数的理论基础1.3.2优化算法1.3.2.1梯度下降算法局限1.3.2.2随机梯度下降与小批量梯度下降1.4算法流程1.5逻辑回归优缺点1.6案例1.7classification_report()参数二、逻辑回归与线性回归的区
- Java:实现中速后缀阵列,时间复杂度:O (nlog ^ 2 (n))算法(附带源码)
Katie。
Java算法完整教程算法
项目背景详细介绍后缀数组(SuffixArray)是字符串处理领域的重要数据结构,它能够以线性或接近线性时间完成对一个长度为nnn的字符串所有后缀的字典序排序,并在此基础上支持高效的子串查询、最长公共前缀(LCP)查询、不同子串计数、模式匹配等操作。相比于后缀树,后缀数组的实现更为简洁,空间开销更小,因而在实际工程中被广泛应用于全文检索、基因序列分析、数据压缩以及信息安全等场景。本项目涵盖一种中速
- JAVA队列( Queue ) 详解
java叶新东老师
队列
什么是队列?队列是一种特殊的线性表,遵循先入先出、后入后出的基本原则,一般来说,它只允许在表的前端进行删除操作,而在表的后端进行插入操作,但是java的某些队列运行在任何地方插入删除;比如我们常用的LinkedList集合,它实现了Queue接口,因此,我们可以理解为LinkedList就是一个队列;java队列特性队列主要分为阻塞和非阻塞,有界和无界、单向链表和双向链表之分;阻塞和非阻塞阻塞队列
- 高斯牛顿法与拟牛顿法详解:非线性优化两大核心算法
北辰alk
AI算法
文章目录一、引言:非线性优化问题概述二、高斯牛顿法详解2.1算法原理与推导2.2算法流程2.3代码实现2.4应用实例:曲线拟合2.5算法分析三、拟牛顿法详解3.1算法原理3.2常见变体3.2.1DFP方法3.2.2BFGS方法3.3算法流程3.4代码实现(BFGS)3.5应用实例:Rosenbrock函数优化3.6算法分析四、两种算法对比五、改进与变体5.1高斯牛顿法的改进5.1.1Levenbe
- 非线性动力学分析软件:LS-DYNA_(8).边界条件与载荷的施加
kkchenjj
结构力学linux运维服务器结构力学
边界条件与载荷的施加在非线性动力学分析软件中,边界条件和载荷的施加是仿真模型中至关重要的部分。它们直接影响了仿真的准确性和可靠性。本节将详细介绍如何在LS-DYNA中施加边界条件和载荷,并提供具体的操作示例。1.边界条件的施加1.1固定边界条件固定边界条件通常用于固定模型的某些部分,防止其在仿真过程中发生位移。在LS-DYNA中,可以使用*BOUNDARY_SPC关键字来施加固定边界条件。1.1.
- 神经网络和机器学习的一些基本概念
荼渔
机器学习神经网络
记录一些基本概念,不涉及公式推导,因为数学不好,记了也没啥用,但是知道一些基本术语以及其中的关系,对神经网络训练有很大帮助。可能有些概念不会讲得很详细,但是当你有了这个概念,你就知道往这个方向去获取更详细的信息,不至于连往哪走都不知道。下面以多元线性回归模型为例1.模型模型训练过程就是利用已知的x和y,求解b的过程,b也称为权重。虽然没有那么简单,但是训练完成的模型本质上就是一组权重值,如[b1,
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro