- 移动开发领域 Android Studio 的语音识别开发
AI移动开发前沿
androidstudio语音识别xcodeai
移动开发领域AndroidStudio的语音识别开发关键词:AndroidStudio、语音识别开发、移动开发、SpeechRecognizer、Google语音识别API摘要:本文聚焦于移动开发领域中使用AndroidStudio进行语音识别开发的相关技术。首先介绍了AndroidStudio语音识别开发的背景,包括目的、预期读者、文档结构和术语表等内容。接着详细阐述了语音识别的核心概念与联系,
- 如何快速掌握WeNet:从零到一的端到端语音识别学习指南
Crazy learner
语音识别语音识别人工智能wenet
目录为什么选择WeNet?学习路径总览为什么优先学习AIShell示例?详细学习步骤步骤1:环境搭建1.1安装依赖1.2克隆WeNet仓库1.3硬件准备步骤2:运行AIShell示例2.1进入示例目录2.2逐阶段运行2.3各阶段详解2.4快速运行完整流程2.5使用预训练模型加速学习步骤3:掌握核心概念步骤4:实践与调试4.1使用预训练模型4.2修改配置4.3使用自定义数据4.4调试常见问题步骤5:
- 深度学习篇---预训练模型
在深度学习中,预训练模型(PretrainedModel)是提升开发效率和模型性能的“利器”。无论是图像识别、自然语言处理还是语音识别,预训练模型都被广泛使用。下面从概念、使用原因、场景、作用等方面详细介绍,并结合Python代码展示常用预训练模型的使用。一、什么是预训练模型?(通俗易懂版)可以把预训练模型理解为:“别人已经训练好的‘半成品模型’,你可以直接拿来用,或者稍作修改就能适配自己的任务”
- 【AI 赋能:Python 人工智能应用实战】6. 概率图模型入门:贝叶斯网络与隐马尔可夫模型实战
AI_DL_CODE
AI赋能:Python人工智能应用实战人工智能python概率图模型贝叶斯网络隐马尔可夫模型概率推断HMM
摘要:本文系统介绍概率图模型的基础理论与实战应用,聚焦贝叶斯网络与隐马尔可夫模型(HMM)两大核心模型。理论部分解析概率图模型的分类体系:贝叶斯网络(有向无环图)用于静态不确定性建模,代表算法为变量消元,适用于医疗诊断;马尔可夫网络(无向图)依托置信传播,应用于图像分割;HMM(时序链结构)通过维特比算法等解决语音识别等时序问题。详解贝叶斯网络三要素:结构学习(爬山算法)、参数学习(最大似然与贝叶
- 速看!近屿OJAC发布全新AIGC大模型工程师工程师和产品经理学习路径图!
近期,AIGC大模型以其强大的能力和高效的性能,在人工智能领域迅速崭露头角。作为一种创新的AI技术,AIGC大模型的出现无疑为AI领域的发展带来了新的活力和可能。AIGC大模型的火速发展,得益于其出色的学习和处理能力。该模型能够快速理解、学习和处理大量的数据,然后生成准确的结果。这种能力使得AIGC大模型在诸多领域都有着广泛的应用前景,例如自然语言处理、图像识别、语音识别等,并衍生出了各种新型AI
- 如何构建FunASR的本地语音识别服务
FunASR简介FunASR是阿里巴巴达摩院开源的高性能语音识别工具包,支持离线识别和实时流式识别两种模式。其核心特点包括:支持多种语音任务:ASR(自动语音识别)、VAD(语音活动检测)、标点恢复、关键词检测等。提供预训练模型:覆盖中文、英文等多语言,支持不同场景(通用、会议、直播等)。支持多种部署方式:本地Python、Docker容器、ONNX推理优化等。开源地址:GitHub-FunASR
- 语音识别开源项目推荐:GitHub热门仓库盘点
AGI大模型与大数据研究院
AI大模型应用开发实战语音识别开源githubai
2024年必看!GitHub热门语音识别开源项目全解析:从入门到实战关键词语音识别(ASR)、开源项目、GitHub、Whisper、FunASR、PaddleSpeech、深度学习摘要想象一下:开车时只需说一句话就能自动发消息,听英文演讲时实时获得中文翻译,给视障人士读文本时精准转换——这些场景的背后,语音识别(AutomaticSpeechRecognition,ASR)技术正在改变我们与机器
- 基于深度学习的语音识别:从音频信号到文本转录
Blossom.118
机器学习与人工智能深度学习语音识别音视频人工智能机器学习线性代数计算机视觉
前言语音识别(AutomaticSpeechRecognition,ASR)是人工智能领域中一个极具挑战性和应用前景的研究方向。它通过将语音信号转换为文本,为人们提供了更加自然和便捷的人机交互方式。近年来,深度学习技术在语音识别领域取得了显著进展,极大地提高了语音识别的准确率和鲁棒性。本文将详细介绍如何使用深度学习技术构建一个语音识别系统,从音频信号的预处理到模型的训练与部署。一、语音识别的基本概
- 从0构建 HarmonyOS 本地语音识别项目:Whisper 完整落地教程
观熵
国产大模型部署实战全流程指南harmonyos语音识别whisper深度学习机器学习
第一章:鸿蒙手机语音识别项目实战(基于Whisper本地推理)项目目标:构建一个可以在鸿蒙系统手机本地运行的语音识别应用,使用Whisper模型识别用户语音为文字,全程无需联网。1.为什么要在鸿蒙手机本地部署语音识别?在很多移动场景下(驾驶、弱网环境、隐私敏感场景等),云端语音识别存在如下痛点:⏳网络延迟高、体验割裂⚠️数据隐私风险大网络依赖强,弱网/无网直接无法使用而将语音识别模型部署在鸿蒙设备
- 网页语音识别demo
zy_qqqqqq
语音识别csshtml
语音demo*{box-sizing:border-box;margin:0;padding:0;font-family:'PingFangSC','MicrosoftYaHei',sans-serif;}body{display:flex;flex-direction:column;align-items:center;padding:20px;background-color:#f7f9fc;
- VUE如何设置语音
穆罕周
vue.js前端javascript
在Vue项目中设置语音功能可以通过1、使用WebSpeechAPI和2、集成第三方语音合成库来实现。WebSpeechAPI是一种浏览器内置的API,它提供了语音识别和语音合成功能,而第三方语音合成库则提供了更加丰富和灵活的功能。一、使用WebSpeechAPIWebSpeechAPI是一种原生浏览器API,它包括了语音识别和语音合成两部分。以下是如何在Vue项目中使用WebSpeechAPI设置
- webkitSpeechRecognitionHTML5语音识别文字(直接运行)
AIGC创想家
html5语音识别前端
前端想要实现语音转文字,其实不需要任何云服务,浏览器自带的api就能搞定。下面是已经封装好的代码,复制之后可以在控制台只接运行。classSpeechRecognitionManager{??tempTranscript=''??isRecording=false;??timeoutid=0;??exitKeywors=['stop','exit','quit','退出','停止识别','说完了'
- 语音识别文字
记录项目中的语音识别文字功能是怎么做的,有需要的可以借鉴一下,都是干货,简单实用。实现原理:调用浏览器的API监听用户语音,浏览器监听到语音后,就会转成文字。测试环境:Edge--免费(国内可用)Safari--免费(国内可用)Chorme--免费(需要科学上网)FireFox--不支持下面是代码函数干货:注意我用的vue2写的,所以有一些语音展示的动画控制按钮和文本显示的代码。复制代码后,根据你
- 开源模型应用落地-全能音频新纪元-Kimi-Audio-7B-Instruct-重塑多模态交互边界
开源技术探险家
开源模型-实际应用落地开源音视频AIGCagi
一、前言在AI技术持续突破的2025年,音频交互正从单一任务处理迈向全场景融合的新阶段。4月27日,月之暗面(MoonshotAI)开源的Kimi-Audio-7B-Instruct,以“全能音频通才”之姿,为这一进程树立了里程碑式标杆。这款基于70亿参数架构的模型,首次在单一框架内整合语音识别(ASR)、情感分析(SER)、跨语言对话、语音生成(TTS)等十余项任务,并通过12.5Hz混合标记器
- Python深度学习实践:LSTM与GRU在序列数据预测中的应用
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:LSTM与GRU在序列数据预测中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来序列数据预测是机器学习领域的一个重要研究方向,涉及时间序列分析、自然语言处理、语音识别等多个领域。序列数据具有时间依赖性,即序列中每个元素都受到前面元素的影响。传统的机器学习算法难以捕捉这种时间依赖性,而深度学习
- FunASR Paraformer-zh:高效中文端到端语音识别方案全解
项目简介FunASR是阿里巴巴达摩院开源的端到端语音识别工具箱,集成了多种语音识别、语音活动检测(VAD)、说话人识别等模块。其中paraformer-zh和paraformer-zh-streaming是针对中文语音识别任务优化的端到端模型,分别适用于离线和流式场景。Paraformer采用并行Transformer架构,兼具高精度和低延迟,广泛应用于智能客服、会议转写、语音助手等场景。主要特点
- Spring AI 项目实战(十八):Spring Boot + AI + Vue3 + OSS + DashScope 实现高效语音识别系统(附完整源码)
程序员岳彬
SpringAIspring人工智能springboot语音识别后端aijava
系列文章序号文章名称1SpringAI项目实战(一):SpringAI核心模块入门2SpringAI项目实战(二):SpringBoot+AI+DeepSeek深度实战(附完整源码)3SpringAI项目实战(三):SpringBoot+AI+DeepSeek打造智能客服系统(附完整源码)4
- AI数字人系统开发上线全攻略:从0到1全流程解析
v_qutudy
人工智能AI系统开发AI数字人开发
一、需求分析:定义数字人核心能力1.1功能规划矩阵模块基础功能进阶功能形象生成2D/3D建模实时表情捕捉与驱动语音交互TTS语音合成情感识别与应激反应动作系统预设动作库骨骼动画与物理引擎智能决策规则引擎强化学习驱动决策多模态交互文本/语音输入AR/VR空间交互1.2非功能性指标实时性:唇形同步延迟B[语音识别]A-->C[姿态检测]A-->D[文本理解]B-->E[NLP引擎]C-->F[动作解析
- 全面触摸屏输入法设计与实现
长野君
本文还有配套的精品资源,点击获取简介:触摸屏输入法是针对触摸设备优化的文字输入方案,包括虚拟键盘、手写、语音识别和手势等多种输入方式。本方案通过提供主程序文件、用户手册、界面截图、示例图、说明文本和音效文件,旨在为用户提供一个完整的、多样的文字输入体验。开发者通过持续优化算法和用户界面,使用户在无物理键盘环境下也能高效准确地进行文字输入。1.触摸屏输入法概述简介在现代信息技术飞速发展的今天,触摸屏
- 在 Obsidian 中本地使用 DeepSeek — 无需互联网!
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能deepseek
简介您是否想在Obsidian内免费使用类似于ChatGPT的本地LLM?如果是,那么本指南适合您!我将引导您完成在Obsidian中安装和使用DeepSeek-R1模型的确切步骤,这样您就可以在笔记中拥有一个由AI驱动的第二大脑。推荐文章《24GBGPU中的DeepSeekR1:UnslothAI针对671B参数模型进行动态量化》权重1,DeepSeek类《在RaspberryPi上运行语音识别
- 医疗金融预测与语音识别中的模型优化及可解释性技术突破
智能计算研究中心
其他
内容概要随着人工智能技术的纵深发展,模型优化与可解释性技术正在重塑医疗诊断、金融预测及语音识别领域的应用范式。在医疗领域,基于自适应学习的动态参数调整机制,结合迁移学习的跨场景知识复用,显著提升了疾病筛查模型的泛化能力;而金融预测场景中,联邦学习框架通过分布式数据协作,在保障隐私安全的前提下,实现了风险预测模型的多维度优化。语音识别领域则依托边缘计算架构,将模型压缩技术与实时推理引擎结合,有效解决
- 基于 esp32-s3,结合私有化大模型,集asr语音识别、llm大模型、tts语音合成,设计一个技术方案,要求用websocket保持长链接,
以下方案演示了如何基于ESP32-S3,通过私有化大模型组合ASR(语音识别)、LLM(语言大模型)和TTS(语音合成)来构建一个语音交互系统,并且通过WebSocket保持与服务器的长连接通讯。整体方案分为以下几个部分:系统整体架构与数据流协议设计与消息格式服务器端实现示例ESP32-S3端实现示例运行流程与示例下面将对各部分进行详细说明。ESP32-S3没想到私有化大模型速度也能这么快ESP3
- Python 语音识别系列-实战学习-语音识别特征提取
Python语音识别系列-实战学习-语音识别特征提取前言1.预加重、分帧和加窗2.提取特征3.可视化特征4.总结前言语音识别特征提取是语音处理中的一个重要环节,其主要任务是将连续的时域语音信号转换为连续的特征向量,以便于后续的语音识别和语音处理任务。在特征提取阶段,这些特征向量能够捕捉到语音信号中的关键信息,如音调、音色和音节等。特征提取主要可以分为以下几个方面:时域特征提取:包括自相关函数、方差
- 如何获取微信公众号用户的个人信息(包括OpenId)
一杯冰美式_丶
Java相关知识
最近,对微信公众号有点兴趣,就自己研究了研究里面的一些内容,发现还挺有意思的,而且通过微信公众号可以调用一些比较有意思的接口,就比如百度开发服务平台点击进入里面的很有接口,就比较常见的翻译,语音识别,地理位置等等,都挺好的。好了,不多说,进入正题好了。我想,做微信公众号开发的,对于想获取关注了公众号的用户信息,或者说是当前与后台服务器进行交互的当前用户信息,这个功能是很重要的吧。因为,通过这个,可
- AI技术正在深度重构全球产业格局,其影响已超越工具属性,演变为推动行业变革的核心引擎。
一、AI如何重塑AI的工作与行业(AI助手领域)能力升级理解与生成:基于LLM(大语言模型),AI能处理开放式问题、撰写报告、翻译代码,替代部分人类知识工作。个性化交互:通过用户历史对话分析,提供定制化建议(如学习计划、投资策略)。多模态扩展:结合图像/语音识别(如GPT-4V),实现图文分析、医学影像解读等跨模态任务。行业变革客服行业:AI客服处理70%+常规咨询(如阿里小蜜),人力转向复杂问题
- 视觉算法之卷积神经网络
清风AI
深度学习算法详解及代码复现计算机视觉cnn神经网络深度学习python课程设计毕业设计
定义与特点卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专为处理具有网格结构的数据而设计的深度学习模型。其独特的结构和功能使其在图像处理、语音识别等领域展现出卓越的性能:CNN的核心设计理念源于对生物视觉系统的模仿。通过模拟大脑皮层中视网膜和视觉皮层的层次化结构,CNN能够有效地捕捉图像中的局部特征并逐步抽象为高层语义信息。这种设计使得CNN特别擅长处理图像和音
- 手机通话语音离线ASR识别商用和优化方向
limingade
本地AI电话机器人手机提取电话的信令和声音智能手机FunASR离线识别Android做ASR手机断网离线ASRASR语音转文字识别语音识别
手机通话语音离线ASR识别商用和优化方向--本地AI电话机器人上一篇:手机FunASR识别SIM卡通话占用内存和运行性能分析下一篇:编写中。一、前言前面的篇章中,我们尝试了将FunASR的ONNX模型文件加载到Android应用中,实现手机本地不依赖服务器和网络的离线ASR语音识别。并将这个ASR能力应用到了手机麦克风、手机本地的历史通话录音、手机实时的SIM卡电话通话内容的解析上。在实践中,我们
- 鸟类识别与分类相关数据集
Bryan Ding
分类数据挖掘人工智能
随着深度学习技术的快速发展,其在图像识别、语音识别等领域取得了显著的成果。鸟类识别作为生态学研究的重要内容,对于物种多样性保护、生态环境监测等领域具有深远的影响。将深度学习技术应用于鸟类识别,有望提高识别的准确性和效率,为鸟类学研究提供有力支持。本文综述了近年来深度学习在鸟类识别中的应用进展,包括基于图像和声音的鸟类识别系统,分析了其技术框架、实现方法以及在实际应用中的效果。通过对相关文献的梳理,
- AI技术通过多模态应用(即融合文本、图像、语音、视频、传感器数据等多维度信息)正在深刻重塑工作模式、行业生态和人类创造力边界。
zzywxc787
人工智能音视频大数据javaspring开发语言
AI技术通过多模态应用(即融合文本、图像、语音、视频、传感器数据等多维度信息)正在深刻重塑工作模式、行业生态和人类创造力边界。以下从技术融合、行业变革、职业重构三个维度展开分析,并附具体案例:一、技术融合:多模态AI的核心突破跨模态理解引擎案例:Meta的AudiovisualNeuralNetwork(AV-Wav2Vec)实现语音-唇形-场景的联合建模,语音识别错误率降低40%技术指标:跨模态
- 说话人识别python_基于各种分类算法的说话人识别(年龄段识别)
weixin_39673184
说话人识别python
基于各种分类算法的语音分类(年龄段识别)概述实习期间作为帮手打杂进行了一段时间的语音识别研究,内容是基于各种分类算法的语音的年龄段识别,总结一下大致框架,基本思想是:获取语料库TIMIT提取数据特征,进行处理MFCC/i-vectorLDA/PLDA/PCA语料提取,基于分类算法进行分类SVM/SVR/GMM/GBDT...用到的工具有HTK(C,shell)/Kaldi(C++,shell)/L
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多