- Java8 Stream流的sorted()的排序【正序、倒序、多字段排序】
Tony666688888
javawindows开发语言
针对集合排序,java8可以用Stream流的sorted()进行排序。示例Bean以下我们会使用这个Bean来做示例。publicclassOrder{privateStringweight;privateDoubleprice;privateStringdateStr;//忽略getter、setter、构造方法、toString}字段排序首先是比较器Comparator,形式如下:Compa
- 【调试Bug】网络在训练中输出NaN
首先情况是开始训练正常,网络也在更新,更新后网络就输出了NaN。调试过程:1.查看模型权重更新前后的值print("更新前权重信息:")print(f"权重均值:{fc2.weight.mean().item()ifnottorch.isnan(fc2.weight.mean())else'NaN'}")print(f"最大值:{fc2.weight.max().item()ifnottorch.
- 利用Gpu训练
兮℡檬,
深度学习人工智能
方法一:分别对网络模型,数据(输入,标注),损失函数调用.cuda()网络模型:iftorch.cuda.is_available():net=net.cuda()数据(训练和测试):iftorch.cuda.is_available():imgs=imgs.cuda()targets=targets.cuda()损失函数:iftorch.cuda.is_available():loss_fn=l
- DP学习——享元模式
学而时习之,温故而知新。享元模式名词解析有必要解释下“享元”两字,英文原文是flyweightpattern——轻量级模式,但是翻译过来的“享元”两字太牛逼了——褒贬不一,翻译的他妈都不认识。享元的高雅在于:享:共享/共用元:元数据合在一起——享元:共享元数据。至于元数据是啥,看个人理解——对象,结构体、内存块等都可以。点评下:看了享元模式,我个人觉得可以按照原本英文Flyweightpatter
- LeetCode|Day26|191. 位 1 的个数|Python刷题笔记
Norvyn_7
leetcode刷题leetcodepython笔记
LeetCode|Day26|191.位1的个数|Python刷题笔记️本文属于【LeetCode简单题百日计划】系列点击查看系列总目录>>题目简介题号:191.位1的个数难度:简单题目链接:点击跳转题目描述编写一个函数,接收一个无符号整数n,返回其二进制表示中"1"的个数。这个问题通常被称为HammingWeight(汉明重量)。示例1:输入:n=11(二进制为00000000000000000
- 交叉熵损失函数
onlyzzr
深度学习pytorch深度学习机器学习
importtorchimporttorch.nn.functionalasFimporttorch.nnasnnimportmathdefcross_entropyloss(y_pred,y_true):#y_pred'sshapeis[N,C]y_pred=torch.log_softmax(y_pred,dim=-1)loss=-torch.sum(y_true*y_pred,dim=-1)
- 动态规划 (Dynamic Programming) 算法概念-Python示例
香蕉可乐荷包蛋
#动态规划算法动态规划python
Python实例详解1.斐波那契数列#传统递归方法-效率低下O(2^n)deffibonacci_recursive(n):ifn=weights[i-1]:dp[i][w]=max(dp[i][w],dp[i-1][w-weights[i-1]]+values[i-1])returndp[n][capacity]#空间优化版本defknapsack_optimized(weights,value
- Pytorch 自定义损失函数
DeniuHe
Pytorch
自定义HingeLossclassMyHingeLoss(torch.nn.Module):#不要忘记继承Moduledef__init__(self):super(MyHingeLoss,self).__init__()defforward(self,output,target):"""output和target都是1-D张量,换句话说,每个样例的返回是一个标量."""hinge_loss=1-
- Transformer Masked loss原理精讲及其PyTorch逐行实现
MaskedLoss的核心原理是:在计算损失函数时,只考虑真实有意义的词元(token),而忽略掉为了数据对齐而填充的无意义的填充词元(paddingtoken)。这是重要的技术,可以确保模型专注于学习有意义的任务,并得到一个正确的性能评估。1.原理精讲为什么需要MaskedLoss?在训练神经网络时,我们通常会用一个批次(batch)的数据进行训练,而不是一次只用一个样本。对于自然语言处理任务,
- 【美团3面】大模型面试题详解:大模型使用几十条数据微调后为啥性能差的很多?
AI大模型-王哥
产品经理大模型学习AI大模型人工智能大模型大模型教程程序员
一个很有意思的回答:大模型的LossLandscape是由多个“Basin”(盆地)组成的,而不是一个平滑的曲面。如果微调(Fine-Tuning)的优化方向偏离了BasicCapacityBasin,就可能容易训崩掉,虽然训崩的概率不大。大模型(如LLM)在预训练阶段通过海量数据学习,优化出一个“基本能力盆地”(BasicCapacityBasin),这个Basin代表模型具备通用语言理解、生成
- vscode字体字型设置_vscode怎么更换字体
weixin_39846191
vscode字体字型设置
首先,打开设置页面,搜索font,如图:设置中的下面几个属性与字体有关://控制字体系列。"editor.fontFamily":"Consolas,'CourierNew',monospace",//启用字体连字"editor.fontLigatures":false,//以像素为单位控制字号。"editor.fontSize":14,//控制字体粗细。"editor.fontWeight":"
- 零基础数据结构与算法——第五章:高级算法-贪心算法-分数背包&霍夫曼编码
qqxhb
零基础数据结构与算法小学生编程算法算法贪心算法分数背包霍夫曼
5.2.2经典贪心算法问题(下)分数背包问题问题描述:有n个物品,每个物品有重量和价值。现在有一个容量为W的背包,每个物品可以取部分,求解如何选择物品放入背包,使得背包中物品的总价值最大。贪心解法:按照物品的单位价值(价值/重量)排序,优先选择单位价值高的物品。publicstaticdoublefractionalKnapsack(int[]weights,int[]values,intcapa
- PPO流程的个人疑问集锦 Q & A
文中大部分为GPT生成,并由我个人理解后添加了注解。1.PPOLoss和ActorLoss是一个东西吗?个人理解:上图中:PPO-clipLoss指的是用了clip的Actorloss(含kl散度罚项),用来鼓励actor模型在不过度偏离ref模型以及oldactor模型的前提下,对齐人类偏好;LMLoss指的是(交叉)熵损失函数,用来促进actor生成更多样的输出;MSELoss指的是criti
- Yolov8模型训练结果参数理解与分析
Wiktok
YOLOYOLO人工智能大数据
Yolov8模型训练结果参数理解与分析1.Yolov8模型训练结果概述1.1训练结果文件结构YOLOv8模型训练完成后,会生成一系列结果文件,这些文件为模型的评估和后续优化提供了重要依据。训练结果文件主要包括以下几个部分:权重文件夹(weights):包含训练过程中生成的模型权重文件,如best.pt和last.pt。best.pt保存了训练过程中性能最佳的模型权重,而last.pt则保存了最后一
- 【Lucene】lucene的searcher.search查询机制
risc123456
lucene
lucene查询的时候也是先评分排序,最后才获取文档甚至获取文档都不是必须的?是的,你的理解完全正确。1.Lucene查询流程=先评分&排序,后可选地取回文档-IndexSearcher.search(...)在内部先创建`Weight`、`Scorer`,再交给Collector遍历倒排表。-Collector(如TopScoreDocCollector)一边遍历一边实时计算score并维护一个
- tensorflow sigmoid_cross_entropy_with_logits 函数解释及公式推导
CrazyWolf_081c
tensorflowsigmoid_cross_entropy_with_logits函数解释及公式推导tensorflow官方文档解释参考pytorch--BCELosspytorch--BCELoss解释参考定义在tensorflow/python/ops/nn_impl.py.功能:计算在给定logits和label之间的sigmoidcrossentropy。测量离散分类任务中的概率误差,
- LVS调度算法
等风来也chen
随笔lvslvs调度算法
LVS的十种调度算法一)静态调度:①RR(RoundRobin):轮询调度轮询调度算法的原理是每一次把来自用户的请求轮流分配给内部中的服务器,从1开始,直到N(内部服务器个数),然后重新开始循环。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。【提示:这里是不考虑每台服务器的处理能力】②WRR:weight,加权轮询(以权重之间的比例实现在各主机之间进行调度)由于每台服
- LVS调度算法+防火墙解决轮询调度问题+会话解决
甜辣小悦羊
lvs服务器运维
lvs的调度算法类型分配:依据负载状态静态方法:仅根据算法本身进行调度,不考虑RS的负载情况动态方法:主要根据每RS当前的负载状态及调度算法进行调度Overhead=value较小的RS将被调度静态调度方法:RR(roundrobin):轮询RS分别被调度,当RS配置有差别时不推荐WRR(WeightedRR):加权轮询根据RS的配置进行加权调度,性能差的RS被调度的次数少SH(SourceHas
- LVS的10种调度算法
蜡笔晓心
其他
1.1静态算法:1.1.1rr(roundrobin):轮询调度算法:轮询调度算法的原理就是依次将用户的访问请求,平均的分配到每一台web服务节点上,从1开始,到最后一台服务器节点结束,然后在开始新一轮的循环,这种算法简单,但是没有考虑到每台节点服务器的具体性能1.1.2wrr(weight):权重调度算法由于每台服务器的性能会高低不同,wrr将会根据管理员设定的权重值来分配访问请求,权重值越大的
- 2024 年 3 月青少年软编等考 C 语言六级真题解析
南朔 Clancy
青少年软编等考C语言题解集(六级)c语言开发语言算法学习青少年编程栈队列
目录T1.小白鼠再排队思路分析T2.括号匹配问题思路分析T3.stackorqueue思路分析T4.利用队列进行数字排序思路分析T1.小白鼠再排队题目链接:SOJD1172nnn只小白鼠(1#includeusingnamespacestd;structret{intweight;stringhat;}a[105];boolcmp(reta,retb){returna.weight>n;for(i
- el-amap-bezier-curve运用及线弧度设置
·零落·
Vue日常研发问题总结vue.jsjavascriptecmascript
文章目录简介示例线弧度属性主要弧度相关属性其他相关样式属性完整示例链接简介el-amap-bezier-curve是Vue-Amap组件库中的一个组件,用于在高德地图上绘制贝塞尔曲线。基本用法属性path定义曲线的路径,可以是多个弧线段的组合。stroke-weight线条的宽度。stroke-color线条的颜色。stroke-style线条的样式。stroke-opacity线条的透明度。
- 简单英语语法2 - 可数与不可数名词
louyang
1可数名词这些名词代表的东西,可以被一个个数出来。pen,computer,bottle,spoon,desk,cup,television,chair,shoe,finger,flower,camera,stick,balloon,book,table,comb,etc.大多数名词的复数是-直接+spens,computers,bottles,spoons,desks,cups,televisi
- 回归损失函数2 : HUber loss,Log Cosh Loss,以及 Quantile Loss
均方误差(MeanSquareError,MSE)和平均绝对误差(MeanAbsoluteError,MAE)是回归中最常用的两个损失函数,但是其各有优缺点。为了避免MAE和MSE各自的优缺点,在FasterR-CNN和SSD中使用SmoothL1SmoothL1损失函数,当误差在[−1,1][−1,1]之间时,SmoothL1SmoothL1损失函数近似于MSE,能够快速的收敛;在其他的区间则近
- 从服务实例的元数据中获取配置值 vs 从本地配置文件中获取配置值
在微服务架构中,配置管理是保障系统灵活运行的核心环节。开发者常面临选择困境:该从服务实例元数据(如instance.getMetadata().get("weight"))还是本地配置文件(如@Value("${weight}"))获取配置?两者有何本质区别?能否随意互换?本文将整合两种配置获取方式的核心特性,从技术原理到实际应用进行全面解析。一、两种配置获取方式的核心原理与示例1.服务实例元数据
- 46. 携带研究材料(01背包二维数组) 46. 携带研究材料(01背包一维数组)LeetCode 416. 分割等和子集 Leetcode 1049. 最后一块石头的重量II
Tiny番茄
算法动态规划
46.携带研究材料(01背包二维数组)题目是给定一个物品的重量数组weight,和物品对应的价值数组value。另外给了背包需要装多少种物品,和背包的容量(即输入两个数组+背包所考虑的物品种类category和背包的容量bagweight)dp数组的定义,下标表示什么含义。dp[i][j]表示容量为j的背包从编号[0,i]之间选取物品进行存放所能达到的最大价值。其中,横轴上的坐标可以考虑为是背包的
- 【机器学习&深度学习】什么是量化?
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、量化的基本概念1.1量化对比示例1.2量化是如何实现的?二、为什么要进行量化?2.1解决模型体积过大问题2.2降低对算力的依赖2.3加速模型训练和推理2.4优化训练过程2.5降低部署成本小结:量化的应用场景三、量化的类型与实现3.1权重量化(WeightQuantization)3.2激活量化(ActivationQuantization)3.3梯度量化(GradientQuantiz
- 嵌入式学习-PyTorch(8)-day24
LGGGGGQ
学习pytorch深度学习
torch.optim优化器torch.optim是PyTorch中用于优化神经网络参数的模块,里面实现了一系列常用的优化算法,比如SGD、Adam、RMSprop等,主要负责根据梯度更新模型的参数。️核心组成1.常用优化器优化器作用典型参数torch.optim.SGD标准随机梯度下降,支持momentumlr,momentum,weight_decaytorch.optim.Adam自适应学习
- DataWhale 二月组队学习-深入浅出pytorch-Task04
-273.15K
DataWhale组队学习学习pytorch人工智能
一、自定义损失函数1.损失函数的作用与自定义意义在深度学习中,损失函数(LossFunction)用于衡量模型预测结果与真实标签之间的差异,是模型优化的目标。PyTorch内置了多种常用损失函数(如交叉熵损失nn.CrossEntropyLoss、均方误差nn.MSELoss等)。但在实际任务中,可能需要针对特定问题设计自定义损失函数,例如:处理类别不平衡问题(如加权交叉熵)实现特殊业务需求(如对
- C语言自定义数据类型
Oo৹Oo৹Oo৹
C语言c语言开发语言青少年编程学习
一.结构体1.结构体I.基本格式structtag{member-list;}variable-list;II.结构体声明structPERSON//结构体声明{intage;//声明成员类型longss;floatweight;charname[25];}family_member;//定义结构体变量family_memberIII.结构体的特殊声明在声明结构的时候,可以不完全的的声明//匿名结
- 【人脸识别】FROM:提升遮挡状态下的人脸识别效果
姚路遥遥
人脸识别深度学习计算机视觉人工智能遮挡人脸识别损失
论文题目:《End2EndOccludedFaceRecognitionbyMaskingCorruptedFeatures》论文地址:https://arxiv.org/pdf/2108.09468v3.pdf代码地址:https://github.com/haibo-qiu/from1.前言人脸识别技术已经取得了显著的进展,主要归功于以下三个因素:lossfunctions:Centerlos
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方