- 机器学习朴素贝叶斯算法——python详细代码解析(sklearn)
python机器学习ML
机器学习python算法sklearn朴素贝叶斯
朴素贝叶斯算法(NaiveBayesianalgorithm)是在贝叶斯算法的基础上假设特征变量相互独立的一种分类方法,是贝叶斯算法的简化,常用于文档分类和垃圾邮件过滤。当“特征变量相互独立”的假设条件能够被有效满足时,朴素贝叶斯算法具有算法比较简单、分类效率稳定、所需估计参数少、对缺失数据不敏感等种种优势。而在实务中“特征变量相互独立”的假设条件往往不能得到满足,这在一定程度上降低了贝叶斯分类算
- Python 机器学习:NumPy 实现朴素贝叶斯分类器
Python编程之道
Python编程之道python机器学习numpyai
Python机器学习:NumPy实现朴素贝叶斯分类器关键词:朴素贝叶斯分类器、NumPy、机器学习、概率模型、条件概率、拉普拉斯平滑、向量化计算摘要:本文系统讲解朴素贝叶斯分类器的核心原理,基于NumPy实现高效的算法框架,涵盖从概率理论到工程实现的完整流程。通过数学公式推导、代码实现和鸢尾花数据集实战,展示如何利用向量化计算优化概率估计,解决特征独立性假设下的分类问题。同时分析算法优缺点及实际应
- 深度解析基于贝叶斯的垃圾邮件分类
大千AI助手
人工智能Python#OTHER分类数据挖掘人工智能机器学习算法贝叶斯Bayes
贝叶斯垃圾邮件分类的核心逻辑是基于贝叶斯定理,利用邮件中的特征(通常是单词)来计算该邮件属于“垃圾邮件”或“非垃圾邮件”的概率,并根据概率大小进行分类。它是一种朴素贝叶斯分类器,因其假设特征(单词)之间相互独立而得名(虽然这在现实中不完全成立,但效果通常很好)。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的
- 【数据挖掘】期末复习模拟题(暨考试题)
chaser&upper
数据分析随笔小记数据挖掘python聚类
数据挖掘-期末复习试题挑战全网最全题库单选题多选题判断题填空题程序填空sigmoid曼哈顿距离泰坦尼克号披萨价格预测鸢尾花DBSCN密度聚类决策树购物表单-关联规则火龙果-关联分析数据非线性映射高斯朴素贝叶斯分类器手写数字识别k1-10聚类平均偏差程序分析PM2.5线性回归Titanic数据清洗KNN鸢尾花Kmeans聚类KNN电影分类频繁k项集混淆矩阵OverlookMOOC总结挑战全网最全题库
- 机器学习新手指南:用Python实现贝叶斯方法与概率模型
人工智能教程
机器学习python人工智能深度学习cnn自然语言处理分类
在机器学习的世界里,贝叶斯方法和概率模型是一类非常重要的工具。它们通过概率的方式来建模和解决问题,能够提供对数据的深刻理解和预测的不确定性估计。今天,我们将从零开始,用Python实现一个简单的贝叶斯分类器,带你走进贝叶斯方法的世界!一、贝叶斯方法与概率模型:初识(一)什么是贝叶斯方法?贝叶斯方法是一种基于贝叶斯定理的统计方法,它通过结合先验知识和数据来更新对问题的理解。贝叶斯定理的核心公式如下:
- 机器学习基础 - 分类模型之朴素贝叶斯
yousuotu
杂项机器学习分类人工智能
朴素贝叶斯文章目录朴素贝叶斯1.基本概念1.条件概率2.先验概率3.后验概率2.贝叶斯公式3.条件独立假设4.从机器学习视角理解朴素贝叶斯朴素贝叶斯中的三种模型1.多项式模型2.高斯模型3.伯努利模型QA1.朴素贝叶斯为何朴素?2.朴素贝叶斯分类中某个类别的概率为0怎么办?3.朴素贝叶斯的要求是什么?4.朴素贝叶斯的优缺点?5.朴素贝叶斯与LR区别?1.基本概念1.条件概率P(X∣Y)=P(X,Y
- BERT分类器和朴素贝叶斯分类器比较
非小号
AIbert人工智能深度学习
一、核心原理对比维度预训练模型(如BERT)朴素贝叶斯分类器模型类型深度学习模型,基于Transformer架构,通过大规模无监督预训练学习语言表示。传统机器学习模型,基于贝叶斯定理和特征条件独立假设。特征表示自动学习文本的上下文相关表示(contextualembeddings),捕捉长距离语义依赖。通常使用词袋模型(BagofWords)或TF-IDF,忽略词序和上下文,仅考虑词频。训练方式两
- 连续变量的全概率和贝叶斯公式_朴素贝叶斯分类:原理
小红帽的灰灰狼
连续变量的全概率和贝叶斯公式
贝叶斯原理是英国数学家托马斯·贝叶斯提出的。贝叶斯是个很神奇的人,他的经历类似梵高。生前没有得到重视,死后,他写的一篇关于归纳推理的论文被朋友翻了出来,并发表了。这一发表不要紧,结果这篇论文的思想直接影响了接下来两个多世纪的统计学,是科学史上著名的论文之一。贝叶斯原理贝叶斯为了解决一个叫“逆向概率”问题写了一篇文章,**尝试解答在没有太多可靠证据的情况下,怎样做出更符合数学逻辑的推测。**什么是“
- matlab实现朴素贝叶斯可视化,模式识别(七):MATLAB 实现朴素贝叶斯分类器
哈哈哈哈哈哈哈哈鸽
本系列文章由云端暮雪编辑,转载请注明出处多谢合作!基础介绍今天介绍一种简单高效的分类器——朴素贝叶斯分类器(NaiveBayesClassifier)。相信学过概率论的同学对贝叶斯这个名字应该不会感到陌生,因为在概率论中有一条重要的公式,就是以贝叶斯命名的,这就是“贝叶斯公式”:贝叶斯分类器就是基于这条公式发展起来的,之所以这里还加上了朴素二字,是因为该分类器对各类的分布做了一个假设,即不同类的数
- 使用贝叶斯算法完成垃圾邮件分类实战
万能小贤哥
算法分类人工智能
一、背景与问题分析垃圾邮件长期以来困扰用户,传统方法如关键词匹配和校验码验证存在明显缺陷:误判率高:正常邮件可能包含"发票"、"中奖"等关键词。易被规避:垃圾邮件发送者会替换关键词或插入干扰字符。贝叶斯分类方法通过计算词汇在垃圾邮件中的联合概率实现更精准分类,其优势在于:动态适应新词汇和表达方式数据量越大分类效果越好天然支持概率化评估二、算法核心原理朴素贝叶斯公式:P(Spam∣Words)=P(
- Python从0到100(五十九):机器学习-朴素贝叶斯分类及鸢尾花分类
是Dream呀
分类数据挖掘人工智能
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 鸢尾花python贝叶斯分类_机器学习-利用三种分类器实现鸢尾花分类
weixin_39755853
鸢尾花python贝叶斯分类
利用决策树,KNN和朴素贝叶斯三种分类器,对鸢尾花数据集进行分类。下面是具体的流程和代码:1、数据读取:实验数据是直接加载的sklearn内置的鸢尾花数据集,共150条数据,包含4个特征,而且是一个三分类问题。fromsklearnimportdatasets#导入方法类iris=datasets.load_iris()#加载iris数据集iris_feature=iris.data#加载特征数据
- 朴素贝叶斯和半朴素贝叶斯(AODE)分类器Python实现
McQueen_LT
机器学习机器学习python人工智能数据分析数据挖掘
一、概述机器学习最后一次实验,要求实现朴素贝叶斯和AODE的半朴素贝叶斯分类器。由于老师说可以调用现成的相关机器学习的库,所以我一开始在做朴素贝叶斯分类器的时候,直接调用了sklearn库,很方便,可是问题来了,在做AODE半朴素贝叶斯分类器的时候,并没有找到集成好的方法。所以就想着自己把半朴素贝叶斯分类器实现了,朴素贝叶斯分类就直接调用库算了。可是让人头大的是,上来就直接实现AODE分类器还是不
- Level3 — PART 4 机器学习算法 — 朴素贝叶斯
ErbaoLiu
数据分析&大模型自然语言处理&大模型机器学习&大模型机器学习人工智能朴素贝叶斯NaiveBayes
目录贝叶斯定理朴素贝叶斯模型(NaiveBayesModel)估计离散估计极大似然估计案例朴素贝叶斯扩展高斯贝叶斯分类器原理应用源码分析伯努利贝叶斯分类器原理源码分析多项朴素贝叶斯分类器半朴素贝叶斯分类器模拟题CDALEVELIII模拟题(一)CDALEVELIII模拟题(二)贝叶斯定理贝叶斯定理由英国数学家贝叶斯(ThomasBayes1702-1761)发展,用来描述两个条件概率之间的关系,比
- 机器学习常用算法整理
上天夭
面试
文章目录机器学习常用算法整理一、监督学习1.1、决策树(DecisionTrees)1.1.1、ID31.1.2、C4.51.1.3、CART1.2、朴素贝叶斯分类(NaiveBayesianclassification)1.3、线性回归(LinearRegression)1.4、逻辑回归(LogisticRegression)1.5、支持向量机(SupportVectorMachine,SVM)
- 分类分析|KNN分类模型及其Python实现
皖山文武
商务智能数据挖掘分类python数据挖掘
KNN分类模型及其Python实现1.KNN算法思想2.KNN算法步骤2.1KNN主要优点2.2KNN主要缺点3.Python实现KNN分类算法3.1自定义方法实现KNN分类3.2调用scikit-learn模块实现KNN分类4.K值的确定在之前文章分类分析|贝叶斯分类器及其Python实现中,我们对分类分析和分类模型进行了介绍,这里1.KNN算法思想 KNN(K-NearestNeighbor)
- 基于文本的情感分析
李昊哲小课
大数据数据分析人工智能python数据分析机器学习自然语言处理
基于文本的情感分析代码逻辑顺序说明数据加载与特征转换:首先加载积极和消极评论数据,并将其转换为特征集。这是情感分析的基础步骤,为后续的模型训练提供数据支持。数据集划分:将特征集划分为训练集和测试集。通常使用80%的数据作为训练集,20%的数据作为测试集,以评估模型的性能。模型训练:使用训练集训练朴素贝叶斯分类器。朴素贝叶斯是一种简单而有效的分类算法,适用于文本分类任务。模型测试:使用测试集评估分类
- 预测分析(三):基于机器学习的分类预测
^ω^宇博
数学建模数学模型机器学习分类人工智能
文章目录基于机器学习的分类预测分类任务逻辑回归分类树分类树的工作原理随机森林多元分类朴素贝叶斯分类器贝叶斯公式回到分类问题**1.算法原理****2.主要类型****(1)高斯朴素贝叶斯****(2)多项式朴素贝叶斯****(3)伯努利朴素贝叶斯****3.优缺点****4.应用场景****5.评估指标****6.示例代码(Python)**基于机器学习的分类预测分类任务分类问题主要是分为三种类型
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- 【基于PyTorch】多项式贝叶斯分类器实现中文文本情感分类任务
鱼弦
机器学习设计类系统pytorch分类人工智能
多项式贝叶斯分类器实现中文文本情感分类任务介绍多项式朴素贝叶斯(MultinomialNaiveBayes,MultinomialNB)是一种常用于文本分类的算法,特别适用于多类别文本分类。其在处理离散数据(如文本数据中的词频)时表现优异,可以用于情感分析、垃圾邮件检测等任务。应用使用场景情感分析:识别用户评论的情感,例如正面评论和负面评论。垃圾邮件检测:鉴别电子邮件是否为垃圾邮件。新闻分类:将新
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 使用Python和机器学习技术对高中物理题目进行分类的示例代码
max500600
python机器学习python分类
以下是一个使用Python和机器学习技术对高中物理题目进行分类的示例代码。我们将使用自然语言处理(NLP)技术处理题目的文本信息,并使用朴素贝叶斯分类器进行分类。步骤概述数据准备:准备包含高中物理题目的数据集,每个题目都有对应的类别标签。文本预处理:对题目文本进行清洗和特征提取。模型训练:使用训练数据训练分类模型。模型评估:使用测试数据评估模型的性能。预测:使用训练好的模型对新的物理题目进行分类。
- 【西瓜书《机器学习》七八九章内容通俗理解】
游戏乐趣
人工智能机器学习人工智能
第七章:贝叶斯分类器7.1贝叶斯决策论基础核心概念:贝叶斯分类器是基于概率来做分类决策的。简单来说,就是根据已知的一些条件,去计算每个类别出现的概率,然后选择概率最大的那个类别作为分类结果。就好比你在猜一个盒子里装的是红球还是蓝球,你可以根据之前从这个盒子里摸球的一些经验(比如摸出红球的次数多),来判断这次盒子里更有可能是红球还是蓝球。例子:假如你要判断一幅图片是猫还是狗。你知道在所有的图片数据里
- 机器学习—赵卫东阅读笔记(一)
走在考研路上
深度学习了解机器学习笔记人工智能
第一章:机器学习基础1.1.2机器学习主要流派1.符号主义2.贝叶斯分类——基础是贝叶斯定理3.联结主义——源于神经学,主要算法是神经网络。——BP算法:作为一种监督学习算法,训练神经网络时通过不断反馈当前网络计算结果与训练数据之间的误差来修正网络权重,使误差足够小。4.进化计算——通过迭代优化,找到最佳结果。——具有自组织、自适应、自学习的特性,能够有效处理传统优化算法难以解决的复杂问题(例如N
- 机器学习算法 —— 朴素贝叶斯
ZShiJ
机器学习算法机器学习算法分类贝叶斯
欢迎来到我的博客——探索技术的无限可能!博客的简介(文章目录)目录朴素贝叶斯朴素贝叶斯的介绍朴素贝叶斯的优点朴素贝叶斯的缺点朴素贝叶斯的应用实战(贝叶斯分类)莺尾花数据库函数导入数据导入和分析模型训练模型预测原理简析模拟离散数据集朴素贝叶斯朴素贝叶斯的介绍朴素贝叶斯法=贝叶斯定理+特征条件独立。朴素贝叶斯(NaiveBayes)是基于贝叶斯定理的概率分类算法。该算法假设特征之间相互独立,即某个特征
- 自定义数据集 ,使用朴素贝叶斯对其进行分类
知识鱼丸
machinelearning机器学习
数据集定义:-data列表包含了文本样本及其对应的情感标签。每个元素是一个元组,第一个元素是文本,第二个元素是标签。特征提取:-使用CountVectorizer将文本转换为词频向量。fit_transform方法在训练数据上拟合向量器并进行转换。模型训练:-初始化MultinomialNB模型,这是适用于离散数据(如词频)的朴素贝叶斯分类器。-使用fit方法在提取的特征和标签上训练模型。预测:-
- 利用贝叶斯和决策树 来进行医疗诊断的
杨航 AI
决策树算法机器学习
要使用Python实现一个基于贝叶斯分类器和决策树的医疗诊断功能,我们需要构建一个模型,该模型可以根据病人描述的症状预测可能的病症。这个模型将利用贝叶斯分类器和决策树来进行预测。以下是一个基本的实现思路:数据准备:我们需要一个包含不同症状和对应病症的数据集。这个数据集将用于训练我们的贝叶斯分类器和决策树。贝叶斯分类器:我们使用朴素贝叶斯分类器来根据给定的症状计算每个病症的概率。决策树:我们使用决策
- Python实战:爬取小红书评论并进行情感分析
Mr 睡不醒
python开发语言机器学习
在这篇博客中,我们将探讨如何使用Python爬取小红书的评论数据,并使用朴素贝叶斯分类器进行情感分析。本教程将涵盖从数据采集到模型训练和预测的完整流程。准备工作首先,确保你的Python环境中已安装以下库:pipinstallpandassklearnrequestsbeautifulsoup4seleniumselenium需要环境搭建爬取小红书评论我们将使用requests和Beautiful
- 【机器学习笔记】4 朴素贝叶斯
RIKI_1
机器学习机器学习笔记人工智能
贝叶斯方法贝叶斯分类贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。朴素贝叶斯分类是这一类算法中最简单的较为常见的算法。先验概率根据以往经验和分析得到的概率。我们用()来代表在没有训练数据前假设拥有的初始概率。后验概率根据已经发生的事件来分析得到的概率。以(|)代表假设成立的情下观察到数据的概率,因为它反映了在看到训练数据后成立的置信度。联合概率是指在多元的概率分
- 21丨朴素贝叶斯分类(下):如何对文档进行分类?
张九日zx
朴素贝叶斯分类最适合的场景就是文本分类、情感分析和垃圾邮件识别。sklearn机器学习包sklearn的全称叫Scikit-learn,它给我们提供了3个朴素贝叶斯分类算法,分别是高斯朴素贝叶斯(GaussianNB)、多项式朴素贝叶斯(MultinomialNB)和伯努利朴素贝叶斯(BernoulliNB)。自然界的现象比较适合用高斯朴素贝叶斯来处理,而文本分类是使用多项式朴素贝叶斯或者伯努利朴
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL