- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 机器学习朴素贝叶斯算法——python详细代码解析(sklearn)
python机器学习ML
机器学习python算法sklearn朴素贝叶斯
朴素贝叶斯算法(NaiveBayesianalgorithm)是在贝叶斯算法的基础上假设特征变量相互独立的一种分类方法,是贝叶斯算法的简化,常用于文档分类和垃圾邮件过滤。当“特征变量相互独立”的假设条件能够被有效满足时,朴素贝叶斯算法具有算法比较简单、分类效率稳定、所需估计参数少、对缺失数据不敏感等种种优势。而在实务中“特征变量相互独立”的假设条件往往不能得到满足,这在一定程度上降低了贝叶斯分类算
- 朴素贝叶斯
不会忘的名字
1.关键词朴素:独立性假设贝叶斯公式贝叶斯公式简单例子另一个例子,现分别有A、B两个容器,在容器A里分别有7个红球和3个白球,在容器B里有1个红球和9个白球,现已知从这两个容器里任意抽出了一个球,且是红球,问这个红球是来自容器A的概率是多少?假设已经抽出红球为事件B,选中容器A为事件A,则有:P(B)=8/20,P(A)=1/2,P(B|A)=7/10,按照公式,则有:P(A|B)=(7/10)*
- Python 机器学习:NumPy 实现朴素贝叶斯分类器
Python编程之道
Python编程之道python机器学习numpyai
Python机器学习:NumPy实现朴素贝叶斯分类器关键词:朴素贝叶斯分类器、NumPy、机器学习、概率模型、条件概率、拉普拉斯平滑、向量化计算摘要:本文系统讲解朴素贝叶斯分类器的核心原理,基于NumPy实现高效的算法框架,涵盖从概率理论到工程实现的完整流程。通过数学公式推导、代码实现和鸢尾花数据集实战,展示如何利用向量化计算优化概率估计,解决特征独立性假设下的分类问题。同时分析算法优缺点及实际应
- python学智能算法(十五)|机器学习朴素贝叶斯方法进阶-CountVectorizer多文本处理
西猫雷婶
人工智能机器学习python学习笔记机器学习python人工智能深度学习scikit-learn
【1】引言前序学习进程中,已经学习CountVectorizer文本处理的简单技巧,先相关文章链接为:python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试-CSDN博客此次继续深入,研究多文本的综合处理。【2】代码测试首先相对于单文本测试,直接将文本改成多行文本:#引入必要的模块fromsklearn.feature_extraction.te
- 深度解析基于贝叶斯的垃圾邮件分类
大千AI助手
人工智能Python#OTHER分类数据挖掘人工智能机器学习算法贝叶斯Bayes
贝叶斯垃圾邮件分类的核心逻辑是基于贝叶斯定理,利用邮件中的特征(通常是单词)来计算该邮件属于“垃圾邮件”或“非垃圾邮件”的概率,并根据概率大小进行分类。它是一种朴素贝叶斯分类器,因其假设特征(单词)之间相互独立而得名(虽然这在现实中不完全成立,但效果通常很好)。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的
- Sklearn 机器学习 数值离散化 区间标签
Thomas Kant
人工智能机器学习sklearn人工智能
亲爱的技术爱好者们,热烈欢迎来到Kant2048的博客!我是ThomasKant,很开心能在CSDN上与你们相遇~本博客的精华专栏:【自动化测试】【测试经验】【人工智能】【Python】Sklearn机器学习:数值离散化之区间标签设置详解在机器学习中,连续数值型特征并不总是最优选择,尤其是在面对一些对数值大小不敏感的模型(如决策树、朴素贝叶斯)时。此时,我们常常希望将连续变量离散化(Discret
- 第九课:大白话教你朴素贝叶斯
顽强卖力
机器学习-深度学习-神经网络算法python大数据数据分析
这节课咱们来聊聊朴素贝叶斯(NaiveBayes),这个算法名字听起来像是个“天真无邪的数学小天才”,但其实它是个超级实用的分类工具!我会用最接地气的方式,从定义讲到代码实战,保证你笑着学会,还能拿去忽悠朋友!一:朴素贝叶斯是啥?——当概率论遇上“天真”假设1.1定义:贝叶斯定理的“偷懒版”问题:你想判断一封邮件是不是垃圾邮件,或者一条评论是不是好评。贝叶斯定理(原版):[P(A|B)=\frac
- python学智能算法(十三)|机器学习朴素贝叶斯方法进阶-简单二元分类
西猫雷婶
人工智能机器学习python学习笔记机器学习python分类人工智能开发语言矩阵深度学习
引言前述学习进程中,已经学习了拉普拉斯平滑公式计算条件概率的简单应用,文章链接为:python学智能算法(十二)|机器学习朴素贝叶斯方法初步-拉普拉斯平滑计算条件概率在此基础上,今天更进一步,联系一个简单二元分类的项目。项目介绍简单二元分类,就是把数据分成两种样本,完成区分即可。参数定义开展项目之前,先来定义几个参数:先验概率P(y):P(y)=∑j=1j=nyj∑yP(y)=\frac{\sum
- python学智能算法(十二)|机器学习朴素贝叶斯方法初步-拉普拉斯平滑计算条件概率
西猫雷婶
人工智能概率论机器学习机器学习人工智能深度学习矩阵python开发语言
【1】引言前序学习进程中,对条件概率进行了简单探索:https://blog.csdn.net/weixin_44855046/article/details/145388138?spm=1001.2014.3001.5501今天,以此为基础,探索机器学习中朴素贝叶斯方法的基本程序。【2】代码解读【2.1】库引入这里只需要numpy库:#引入numpy模块importnumpyasnp【2.2】初
- python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试
西猫雷婶
python学习笔记机器学习人工智能机器学习python人工智能
【1】引用前序学习文章中,已经对拉普拉斯平滑和简单二元分类进行了初步探索,相关文章链接为:python学智能算法(十二)|机器学习朴素贝叶斯方法初步-拉普拉斯平滑计算条件概率-CSDN博客python学智能算法(十三)|机器学习朴素贝叶斯方法进阶-简单二元分类-CSDN博客在实践应用中也会发现,朴素贝叶斯方法还能对文本进行分类,今天的学习目标就是学习简单的文本操作技巧,需要使用sklearn里面的
- 【数据挖掘】期末复习模拟题(暨考试题)
chaser&upper
数据分析随笔小记数据挖掘python聚类
数据挖掘-期末复习试题挑战全网最全题库单选题多选题判断题填空题程序填空sigmoid曼哈顿距离泰坦尼克号披萨价格预测鸢尾花DBSCN密度聚类决策树购物表单-关联规则火龙果-关联分析数据非线性映射高斯朴素贝叶斯分类器手写数字识别k1-10聚类平均偏差程序分析PM2.5线性回归Titanic数据清洗KNN鸢尾花Kmeans聚类KNN电影分类频繁k项集混淆矩阵OverlookMOOC总结挑战全网最全题库
- 机器学习算法——朴素贝叶斯和特征降维
TY-2025
机器学习机器学习算法人工智能
一、常见概率计算朴素贝叶斯算法是利用概率值进行分类的一种机器学习算法概率:一种事情发生的可能性,取值在[0,1]之间条件概率:表示事件A在另外一个事件B已经发生的条件下的发生概率P(A∣B)P(A|B)P(A∣B)联合概率:表示多个条件同时成立的概率P(AB)=P(A)∗P(B∣A)=P(B)∗P(A∣B)P(AB)=P(A)*P(B|A)=P(B)*P(A|B)P(AB)=P(A)∗P(B∣A)
- 机器学习基础 - 分类模型之朴素贝叶斯
yousuotu
杂项机器学习分类人工智能
朴素贝叶斯文章目录朴素贝叶斯1.基本概念1.条件概率2.先验概率3.后验概率2.贝叶斯公式3.条件独立假设4.从机器学习视角理解朴素贝叶斯朴素贝叶斯中的三种模型1.多项式模型2.高斯模型3.伯努利模型QA1.朴素贝叶斯为何朴素?2.朴素贝叶斯分类中某个类别的概率为0怎么办?3.朴素贝叶斯的要求是什么?4.朴素贝叶斯的优缺点?5.朴素贝叶斯与LR区别?1.基本概念1.条件概率P(X∣Y)=P(X,Y
- BERT分类器和朴素贝叶斯分类器比较
非小号
AIbert人工智能深度学习
一、核心原理对比维度预训练模型(如BERT)朴素贝叶斯分类器模型类型深度学习模型,基于Transformer架构,通过大规模无监督预训练学习语言表示。传统机器学习模型,基于贝叶斯定理和特征条件独立假设。特征表示自动学习文本的上下文相关表示(contextualembeddings),捕捉长距离语义依赖。通常使用词袋模型(BagofWords)或TF-IDF,忽略词序和上下文,仅考虑词频。训练方式两
- Spark与朴素贝叶斯在股票市场预测中的应用及代码实战
飞翔的袋鼠弟
本文还有配套的精品资源,点击获取简介:本项目展示了如何利用Spark框架结合朴素贝叶斯算法进行股票市场的预测。项目涵盖了从原始股票数据的处理到模型训练的全过程,包括数据预处理、特征工程、模型训练和测试。所使用的数据文件包括原始股票数据、不同阶段的数据转换结果、数据平均值计算结果和测试数据集。同时提供了Java和Python实现的代码文件,包括数据处理、模型训练和评估。朴素贝叶斯算法在股票预测中通过
- 连续变量的全概率和贝叶斯公式_朴素贝叶斯分类:原理
小红帽的灰灰狼
连续变量的全概率和贝叶斯公式
贝叶斯原理是英国数学家托马斯·贝叶斯提出的。贝叶斯是个很神奇的人,他的经历类似梵高。生前没有得到重视,死后,他写的一篇关于归纳推理的论文被朋友翻了出来,并发表了。这一发表不要紧,结果这篇论文的思想直接影响了接下来两个多世纪的统计学,是科学史上著名的论文之一。贝叶斯原理贝叶斯为了解决一个叫“逆向概率”问题写了一篇文章,**尝试解答在没有太多可靠证据的情况下,怎样做出更符合数学逻辑的推测。**什么是“
- matlab实现朴素贝叶斯可视化,模式识别(七):MATLAB 实现朴素贝叶斯分类器
哈哈哈哈哈哈哈哈鸽
本系列文章由云端暮雪编辑,转载请注明出处多谢合作!基础介绍今天介绍一种简单高效的分类器——朴素贝叶斯分类器(NaiveBayesClassifier)。相信学过概率论的同学对贝叶斯这个名字应该不会感到陌生,因为在概率论中有一条重要的公式,就是以贝叶斯命名的,这就是“贝叶斯公式”:贝叶斯分类器就是基于这条公式发展起来的,之所以这里还加上了朴素二字,是因为该分类器对各类的分布做了一个假设,即不同类的数
- 基于ThinkPHP-Laravel的智能养猫商城系统:融合AI与创新算法的未来宠物电商解决方案——用技术重新定义宠物生活体验
qq_42682397
laravel人工智能算法
导语:当养猫经济遇上全栈开发与AI算法在宠物经济蓬勃发展的2025年,我们推出了一款基于ThinkPHP-Laravel全栈开发的智能养猫用品商城系统。系统不仅实现了电商核心功能,更创新性融合车牌识别、K-means聚类算法、朴素贝叶斯算法等AI能力,为宠物主提供智能化购物体验,为商家打造数据驱动的精准运营体系。项目源码已开源,助力开发者快速构建高扩展性宠物垂直电商平台!系统核心亮点:AI赋能,重
- 使用贝叶斯算法完成垃圾邮件分类实战
万能小贤哥
算法分类人工智能
一、背景与问题分析垃圾邮件长期以来困扰用户,传统方法如关键词匹配和校验码验证存在明显缺陷:误判率高:正常邮件可能包含"发票"、"中奖"等关键词。易被规避:垃圾邮件发送者会替换关键词或插入干扰字符。贝叶斯分类方法通过计算词汇在垃圾邮件中的联合概率实现更精准分类,其优势在于:动态适应新词汇和表达方式数据量越大分类效果越好天然支持概率化评估二、算法核心原理朴素贝叶斯公式:P(Spam∣Words)=P(
- 建立多项式朴素贝叶斯模型实战指南
万能小贤哥
机器学习人工智能算法
一、模型选择与实现针对文本分类任务(如垃圾邮件识别),多项式朴素贝叶斯(MultinomialNB)是最优选择:适用场景:处理离散型特征(如词频、TF-IDF值)核心优势:直接利用整数型词频特征,无需假设数据分布对比区别:高斯朴素贝叶斯:假设特征符合正态分布,适合连续型数据伯努利朴素贝叶斯:处理二值化特征(是否存在某个词)python复制下载fromsklearn.naive_bayesimpor
- 机器学习算法——朴素贝叶斯算法
阿K还阔以
机器学习算法人工智能
一、朴素贝叶斯算法介绍1、朴素贝叶斯算法概述朴素贝叶斯算法是一种经典的概率分类算法,它基于贝叶斯定理和特征独立性假设。该算法常被用于文本分类、垃圾邮件过滤、情感分析等领域。朴素贝叶斯算法的核心思想是通过已知类别的训练样本集,学习出每个类别的概率分布模型,然后根据待分类样本的特征,利用贝叶斯定理计算出样本属于各个类别的后验概率,最终选择具有最大后验概率的类别作为分类结果。在朴素贝叶斯算法中,特征之间
- Python从0到100(五十九):机器学习-朴素贝叶斯分类及鸢尾花分类
是Dream呀
分类数据挖掘人工智能
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 实战9:机器学习之:朴素贝叶斯方法对鸢尾花卉品种预测实战教程
计算机毕设论文
机器学习实战100例算法数据挖掘决策树
1.理论部分朴素贝叶斯是一种基于贝叶斯定理的有监督分类算法。该算法一个重要的特点:假设特征条件独立,正是这个假设使得朴素贝叶斯法的学习和预测变得简单。在特征条件独立的假设下,朴素贝叶斯法先利用训练数据集的先验统计信息计算特征向量与标签的联合概率分布,然后对于新输入的样本点,利用联合概率分布计算后验概率,并用后验概率最大的输出标签确定为新样本点的类别。注意:假设特征条件独立正是朴素贝叶斯中“朴素”两
- 鸢尾花python贝叶斯分类_机器学习-利用三种分类器实现鸢尾花分类
weixin_39755853
鸢尾花python贝叶斯分类
利用决策树,KNN和朴素贝叶斯三种分类器,对鸢尾花数据集进行分类。下面是具体的流程和代码:1、数据读取:实验数据是直接加载的sklearn内置的鸢尾花数据集,共150条数据,包含4个特征,而且是一个三分类问题。fromsklearnimportdatasets#导入方法类iris=datasets.load_iris()#加载iris数据集iris_feature=iris.data#加载特征数据
- 基于机器学习的舆情分析算法研究
赵谨言
论文经验分享毕业设计
标题:基于机器学习的舆情分析算法研究内容:1.摘要随着互联网的飞速发展,舆情信息呈现爆炸式增长,如何快速准确地分析舆情成为重要课题。本文旨在研究基于机器学习的舆情分析算法,以提高舆情分析的效率和准确性。方法上,收集了近10万条社交媒体的舆情文本数据,利用多种机器学习算法如支持向量机、朴素贝叶斯、决策树等进行训练和优化。结果表明,经过优化的支持向量机算法在舆情分类的准确率上达到了85%以上,明显高于
- 朴素贝叶斯和半朴素贝叶斯(AODE)分类器Python实现
McQueen_LT
机器学习机器学习python人工智能数据分析数据挖掘
一、概述机器学习最后一次实验,要求实现朴素贝叶斯和AODE的半朴素贝叶斯分类器。由于老师说可以调用现成的相关机器学习的库,所以我一开始在做朴素贝叶斯分类器的时候,直接调用了sklearn库,很方便,可是问题来了,在做AODE半朴素贝叶斯分类器的时候,并没有找到集成好的方法。所以就想着自己把半朴素贝叶斯分类器实现了,朴素贝叶斯分类就直接调用库算了。可是让人头大的是,上来就直接实现AODE分类器还是不
- Level3 — PART 4 机器学习算法 — 朴素贝叶斯
ErbaoLiu
数据分析&大模型自然语言处理&大模型机器学习&大模型机器学习人工智能朴素贝叶斯NaiveBayes
目录贝叶斯定理朴素贝叶斯模型(NaiveBayesModel)估计离散估计极大似然估计案例朴素贝叶斯扩展高斯贝叶斯分类器原理应用源码分析伯努利贝叶斯分类器原理源码分析多项朴素贝叶斯分类器半朴素贝叶斯分类器模拟题CDALEVELIII模拟题(一)CDALEVELIII模拟题(二)贝叶斯定理贝叶斯定理由英国数学家贝叶斯(ThomasBayes1702-1761)发展,用来描述两个条件概率之间的关系,比
- 机器学习常用算法整理
上天夭
面试
文章目录机器学习常用算法整理一、监督学习1.1、决策树(DecisionTrees)1.1.1、ID31.1.2、C4.51.1.3、CART1.2、朴素贝叶斯分类(NaiveBayesianclassification)1.3、线性回归(LinearRegression)1.4、逻辑回归(LogisticRegression)1.5、支持向量机(SupportVectorMachine,SVM)
- 机器学习(6)——朴素贝叶斯
追逐☞
机器学习机器学习人工智能概率论
文章目录1.什么是朴素贝叶斯算法?2.核心思想3.数学基础3.算法步骤3.1.计算先验概率3.2.计算条件概率4.常见变种5.优缺点6.零概率问题与平滑技术7.应用场景8.Python示例9.参数调优10.总结1.什么是朴素贝叶斯算法?朴素贝叶斯算法(NaiveBayes)是一种基于贝叶斯定理的概率分类算法,在机器学习和数据挖掘中广泛应用。它被称为“朴素”的原因是它假设特征之间是条件独立的,这简化
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio