- Hive使用必知必会系列
王知无(import_bigdata)
Hive系统性学习专栏hivebigdatahdfs
一、Hive的几种数据模型内部表(Table将数据保存到Hive自己的数据仓库目录中:/usr/hive/warehouse)外部表(ExternalTable相对于内部表,数据不在自己的数据仓库中,只保存数据的元信息)分区表(PartitionTable将数据按照设定的条件分开存储,提高查询效率,分区----->目录)桶表(BucketTable本质上也是一种分区表,类似hash分区桶---->
- Consul 与 Hive:云原生数据仓库集成
AI云原生与云计算技术学院
AI云原生与云计算数据仓库consulhiveai
Consul与Hive:云原生数据仓库集成关键词:Consul、Hive、云原生、数据仓库集成、服务发现摘要:本文深入探讨了Consul与Hive在云原生环境下的数据仓库集成。首先介绍了集成的背景和相关概念,包括Consul的服务发现机制和Hive作为数据仓库的特点。接着详细阐述了核心概念及联系,通过文本示意图和Mermaid流程图展示其架构。对集成所涉及的核心算法原理进行了讲解,并给出Pytho
- Hive详解
一:Hive的历史价值1,Hive是Hadoop上的KillerApplication,Hive是Hadoop上的数据仓库,Hive同时兼具有数据仓库中的存储引擎和查询引擎的作用;而SparkSQL是一个更加出色和高级的查询引擎,所以在现在企业级应用中SparkSQL+Hive成为了业界使用大数据最为高效和流行的趋势。2,Hive是Facebook的推出,主要是为了让不动Java代码编程的人员也能
- SAP BW数据仓库总览
weixin_42559081
[分享]SAPBW数据仓库简介本文从一个简单的业务场景-销售分析入手,介绍SAPBW(BusinessInfomationWarehouse)实现多维分析的基本方案与实现技术;结合销售分析的实际需求,给出了销售分析管理数据仓库在SAPBW(业务信息仓库)模块中的实现过程描述。1、数据仓库的基本理论1.1数据仓库数据仓库是对数据进行提炼、加工和集成含有一定量商务信息和意义的信息。数据仓库不是为了存储
- 数据江湖的“三国演义”:数据仓库、数据湖与湖仓一体的全景对比
大模型大数据攻城狮
数据仓库数据湖湖仓一体IceberghudiSnowflake流式计算
目录1.数据仓库:秩序井然的“中央档案馆”核心特点:一切为了分析优势:稳定如山,分析无敌短板:灵活性欠佳实战案例:零售巨头的销售分析2.数据湖:自由奔放的“原始丛林”核心特点:包容一切优势:灵活到飞起短板:自由的代价实战案例:流媒体平台的用户行为分析3.湖仓一体:兼得鱼与熊掌的“新物种”核心特点:两全其美优势:全能选手短板:尚在成长实战案例:金融科技的实时风控4.技术选型的“天平”:如何选择适合你
- 【亲测免费】 官方Kettle最新8.2版本下载介绍
岑婵泉Polly
官方Kettle最新8.2版本下载介绍【下载地址】官方Kettle最新8.2版本下载介绍Kettle是一款功能强大的开源ETL工具,专为数据抽取、转换和加载而设计。它由纯Java编写,支持跨平台操作,适用于Windows、Linux和Unix系统。Kettle以其高效稳定的数据处理能力,成为数据工程师的首选工具。它的中文名“水壶”寓意将各种数据汇聚并按照指定格式输出,广泛应用于数据仓库建设和数据清
- 数据空间技术在智慧水库管理平台中的赋能
小赖同学啊
testTechnologyPrecious物联网
数据空间技术在智慧水库管理平台中的赋能:设备到应用的数据传输优化数据空间技术为智慧水库管理平台提供了革命性的数据传输、处理和安全保障能力。以下是数据空间技术在设备到应用数据传输过程中的全面赋能方案:数据空间赋能架构设计中心层区域层设备层数据预处理边缘计算本地决策协议转换数据聚合安全传输元数据管理数据治理访问控制数据服务长期存储业务应用系统数据分析平台数据仓库区域数据空间网关中心数据空间平台边缘数据
- 一文说清楚Hive
Hive作为ApacheHadoop生态的核心数据仓库工具,其设计初衷是为熟悉SQL的用户提供大规模数据离线处理能力。以下从底层计算框架、优点、场景、注意事项及实践案例五个维度展开说明。一、Hive底层分布式计算框架对比Hive本身不直接执行计算,而是将HQL转换为底层计算引擎的任务。目前支持的主流引擎及其特点如下:计算引擎核心原理优点缺点适用场景MapReduce基于“Map→Shuffle→R
- 28、 拥抱数据湖架构
火箭统
数据湖数据仓库大数据架构
拥抱数据湖架构1.数据湖简介在当今数据驱动的世界中,数据湖架构已经成为处理和存储海量数据的有效解决方案。数据湖不仅能够保存来自各种不同来源的原始格式的数据,还为企业提供了灵活且强大的数据分析能力。本文将探讨数据湖架构的概念、优势以及如何在实际中应用数据湖架构来解决数据存储和处理的问题。数据湖的概念最早于2011年被提出。与传统数据仓库不同,数据湖允许企业在不预先定义数据结构的情况下存储大量数据。数
- 数据湖vs数据仓库:非结构化数据存储的终极对决
AI大数据智能洞察
大数据与AI人工智能数据仓库ai
数据湖vs数据仓库:非结构化数据存储的终极对决关键词:数据湖,数据仓库,非结构化数据,数据存储,Schema-on-Read,Schema-on-Write,数据治理摘要:本文深入对比数据湖与数据仓库在非结构化数据存储领域的核心差异,从技术架构、数据处理范式、应用场景等维度展开分析。通过数学模型、代码实战和典型案例,揭示两者在非结构化数据管理中的优势与局限,为企业数据架构选型提供决策参考。1.背景
- 解锁Hive:高效数据查找的秘密武器
YangRyeon
hivehadoop数据仓库
Hive是什么?Hive是基于Hadoop的一个数据仓库工具,它能够进行数据提取、转化和加载操作,为存储、查询和分析Hadoop中的大规模数据提供了有效的机制。Hive能将结构化的数据文件映射为一张数据库表,让用户可以通过熟悉的SQL查询功能来处理数据。其内部机制是将SQL语句巧妙地转变成MapReduce任务来执行,大大降低了开发的难度和复杂性。例如,在面对海量的用户行为日志数据时,Hive就能
- 大数据领域数据架构的市场营销数据分析
AI大数据智能洞察
大数据与AI人工智能大数据AI应用大数据架构数据分析ai
大数据领域数据架构的市场营销数据分析:从数据洪流到营销决策的魔法桥梁关键词:大数据架构、市场营销分析、数据生命周期、RFM模型、实时数据处理、数据仓库、营销决策支持摘要:在这个"数据比石油更宝贵"的时代,企业每天都在被来自用户行为、交易记录、社交媒体等渠道的海量数据淹没。但对市场营销而言,“有数据"不等于"能决策”,就像拥有一堆未经打磨的矿石不等于拥有黄金。本文将以"数据架构"为核心,用生活化的比
- Doris与StarRocks关系解析:大数据技术演进
AI大数据智能洞察
大数据与AI人工智能大数据AI应用大数据ai
Doris与StarRocks关系解析:大数据技术演进关键词:Doris,StarRocks,大数据分析,OLAP,MPP架构,开源技术,数据仓库摘要:在大数据爆炸的时代,我们每天都在产生海量数据——从手机里的聊天记录到电商平台的购物清单,从社交媒体的点赞评论到智能手表的健康数据。如何从这些数据中快速找到有价值的信息,就像在图书馆的百万本书中迅速找到你需要的那一本?OLAP(在线分析处理)系统就是
- MCP 协议:打通 ERP/CRM/ 数据仓库的企业数据集成中枢
在数字化转型浪潮中,企业数据集成始终是绕不开的核心命题。ERP(企业资源计划)系统沉淀着采购、生产、财务等核心交易数据,CRM(客户关系管理)系统存储着客户画像与销售线索,数据仓库则汇聚着历史数据用于战略分析。但传统集成方式下,三者如同孤岛——ERP的结构化数据与CRM的半结构化客户笔记格式冲突,数据仓库的批量同步机制难以匹配ERP的实时交易频率,接口开发需针对不同系统重复编码,每年维护成本占IT
- 软考 | 系统架构设计师:信息系统综合知识大纲(思维导图)
啊有礼貌
软考系统架构设计师架构师思维导图软件架构
1.计算机软件与网络基础知识1.1操作系统操作系统的类型和结构操作系统基本原理网络操作系统及网络管理嵌入式操作系统与实时操作系统1.2数据库系统数据库管理系统的类型、结构和性能评价常用的关系型数据库管理系统数据库模式数据库规范化分布式数据库系统,并行数据库系统数据仓库与数据挖掘技术数据库工程备份恢复1.3嵌入式系统嵌入式系统的特点嵌入式系统的硬件组成与设计嵌入式系统应用软件及开发平台嵌入式系统网络
- DolphinScheduler 如何高效调度 AnalyticDB on Spark 作业?
DolphinScheduler社区
spark大数据分布式
DolphinScheduler是一个分布式易扩展的可视化DAG工作流任务调度开源系统,能高效地执行和管理大数据流程。用户可以在DolphinSchedulerWeb界面轻松创建、编辑和调度云原生数据仓库AnalyticDBMySQL版的Spark作业。前提条件AnalyticDBforMySQL集群的产品系列为企业版、基础版或湖仓版。AnalyticDBforMySQL集群中已创建Job型资源组
- 数据库和数据仓库区别
hhhecker
Hadoop学习数据仓库数据库hive
HIve与Mysql对比HiveMysql数据存储位置HDFS本地磁盘数据格式用户定义系统决定数据更新不支持(不支持修改和删除)支持(支持增删改查)索引有,但较弱,一般很少用有,经常使用的执行MapReduceExecutor执行延迟高低可扩展性高低数据规模大小数据库与数据仓库对比数据库:传统的关系型数据库主要应用在基本的事务处理,例如银行交易之类的场景数据库支持增删改查这些常见的操作。数据仓库:
- 数据仓库和数据库的区别
神秘打工猴
数据仓库数据库
一,数据仓库数据仓库(DataWarehouse)是一种专门设计用于报告和分析的数据库系统,它允许将来自一个或多个数据源的数据集成、存储和分析。数据仓库的主要目的是支持决策制定,通过提供快速访问历史数据和进行复杂查询的能力。以下是数据仓库的一些关键特性和概念:1.主题导向:数据仓库围绕特定的业务主题构建,如销售、客户或财务,而不是围绕应用程序的功能。2.集成性:数据仓库集成了来自不同源系统的数据,
- 数据仓库是什么,一文读懂数据仓库设计步骤
Leo.yuan
数据数据仓库大数据人工智能数据库信息可视化
目录一、数据仓库:干啥用的?1.数据仓库是啥?2.数据仓库有啥大用?二、设计之前:准备啥?1.搞清楚业务要啥2.摸清数据家底3.划好仓库边界三、概念设计:搭框架1.定好主题域2.分清维度和事实3.画出概念模型四、逻辑设计:定细节1.设计维度表和事实表2.想好怎么存数据3.定好安全规矩五、物理设计:落地实施1.选好数据库软件2.优化数据库性能3.部署上线六、实施与测试:跑起来1.ETL:灌数据2.全
- Flink-Hadoop实战项目
Dylan_muc
hadoophdfsflink
项目说明文档1.项目概述1.1项目简介本项目是一个基于ApacheFlink的大数据流处理平台,专门用于处理铁路系统的票务和车次信息数据。系统包含两个核心流处理作业:文件处理作业和数据合并作业,采用定时调度机制,支持Kerberos安全认证,实现从文件读取到数据仓库存储的完整数据处理链路。1.2技术栈流处理引擎:ApacheFlink1.18.1存储系统:HDFS(Hadoop分布式文件系统)数据
- 【Redis篇】数据库架构演进中Redis缓存的技术必然性—高并发场景下穿透、击穿、雪崩的体系化解决方案
奈斯DB
Redis专栏缓存redis数据库架构运维
《博主主页》:CSDN主页__奈斯DBIFClub社区主页__奈斯、《擅长领域》:擅长阿里云AnalyticDBforMySQL(分布式数据仓库)、Oracle、MySQL、Linux、prometheus监控;并对SQLserver、NoSQL(Redis)有了解如果觉得文章对你有所帮助,欢迎点赞收藏加关注作为DBA或运维在日常与Redis打交道时,往往更关注部署安装、Key清理、内存回收、备份
- Linux教程(4)----[hive数据仓库工具]
.房东的猫
Linux教程(完善中~~)linux
Hive基本概念Hive简介什么是HiveHive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。为什么使用Hive直接使用hadoop所面临的问题人员学习成本太高
- flink-sql读写hive-1.13
第一片心意
flinkflinksqlhive
1.版本说明本文档内容基于flink-1.13.x,其他版本的整理,请查看本人博客的flink专栏其他文章。1.1.概述ApacheHive已经成为了数据仓库生态系统中的核心。它不仅仅是一个用于大数据分析和ETL场景的SQL引擎,同样也是一个数据管理平台,可用于发现,定义,和演化数据。Flink与Hive的集成包含两个层面。一是利用了Hive的MetaStore作为持久化的Catalog,用户可通
- 推荐文章:《同济大学软件学院万院长谈择业》
weixin_34087301
同济大学软件学院万院长谈择业一、关于企业计算方向企业计算(EnterpriseComputing)是稍时髦较好听的名词,主要是指企业信息系统,如ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理,即物流软件),银行证券软件,财务软件,电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统。企业计算领域对人才的需求显然永远是数量最大的,因为这是计算
- 计算机系毕业生的前途在哪(一个牛人对计算机系的阐述)
蚊子
嵌入式嵌入式操作系统wincelinux手机游戏j2me
值得未毕业的、刚毕业的、或想转行的朋友们揣摩参考。一、关于企业计算方向企业计算(EnterpriseComputing)是稍时髦较好听的名词,主要是指企业信息系统如:ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理,即物流软件),银行证券软件财务软件电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统。企业计算领域对人才的需求显然永远是数量最
- 大学生学软件必看
欧巴Godwin
日志嵌入式嵌入式操作系统wincelinux手机游戏j2me
一、关于企业计算方向企业计算(EnterpriseComputing)是稍时髦较好听的名词,主要是指企业信息系统,如ERP软件(企业资源规划)、CRM软件(客户关系管理)、SCM软件(供应链管理,即物流软件),银行证券软件,财务软件,电子商务/政务(包括各种网站),数据仓库,数据挖掘,商务智能等企业信息管理系统.企业计算领域对人才的需求显然永远是数量最大的,因为这是计算机应用最多的领域.搞这方面的
- 数据湖与数据仓库在云平台的融合架构:Delta Lake实战指南
AI云原生与云计算技术学院
AI云原生与云计算数据仓库架构ai
数据湖与数据仓库在云平台的融合架构:DeltaLake实战指南关键词:数据湖,数据仓库,云平台,融合架构,DeltaLake,湖仓一体,数据治理摘要:本文深入探讨数据湖与数据仓库在云平台的融合架构,以DeltaLake为核心技术载体,解析湖仓融合的技术原理、实施路径及最佳实践。通过对比传统数据架构的痛点,阐述DeltaLake如何通过ACID事务、Schema管理、时间旅行等特性实现非结构化数据湖
- Hive简介
文章目录Hive简介Hive特点Hive和RDBMS的对比Hive的架构Hive的数据组织Hive数据类型Hive简介1、Hive由Facebook实现并开源2、是基于Hadoop的一个数据仓库工具3、可以将结构化的数据映射为一张数据库表4、并提供HQL(HiveSQL)查询功能5、底层数据是存储在HDFS上6、Hive的本质是将SQL语句转换为MapReduce任务运行7、使不熟悉MapRedu
- 【面试系列】C++ 高频面试题
野老杂谈
全网最全IT公司面试宝典c++面试编程语言
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏:⭐️全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题.⭐️AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。⭐️全流程数据技术实战指南:全面讲解从数据采集到数据可视化的整个过程,掌握构建现代化数据平台和数据仓库的核心技术和方法。文章目录C++初级面试题及其详细解答1.解释C
- Docker快速构建Hive测试环境
静谧星光
dockerhive容器编程
Docker是一种流行的容器化平台,可以帮助我们快速构建和管理应用程序的环境。在本文中,我们将学习如何使用Docker快速构建Hive测试环境。Hive是一个基于Hadoop的数据仓库基础设施,它提供了一种类似于SQL的查询语言,用于分析和处理大规模数据集。步骤1:安装Docker和DockerCompose首先,我们需要安装Docker和DockerCompose。您可以根据您的操作系统类型,从
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =