回忆我们之前的例子
import numpy as np
import matplotlib.pyplot as plt
X = np.empty((100,2))
X[:,0] = np.random.uniform(0.,100.,size=100)
X[:,1] = 0.75 * X[:,0] + 3. +np.random.normal(0,5,size=100)
plt.scatter(X[:,0],X[:,1])
plt.show()
from sklearn.decomposition import PCA
pca = PCA(n_components=1)
pca.fit(X)
X_reduction = pca.transform(X)
X_restore = pca.inverse_transform(X_reduction)
plt.scatter(X_restore[:,0],X_restore[:,1])
plt.show()
from sklearn import datasets
digits = datasets.load_digits()
X = digits.data
y = digits.target
noisy_digits = X + np.random.normal(0,4,size=X.shape)
example_digits = noisy_digits[y==0,:][:10]
for num in range(1,10):
X_num = noisy_digits[y==num,:][:10]
example_digits = np.vstack([example_digits,X_num])
example_digits.shape
输出:(100, 64)
#将100个元素绘制出来¶
def plot_digits(data):
fig,axes = plt.subplots(10,10,figsize=(10,10),
subplot_kw={'xticks':[],'yticks':[]},
gridspec_kw=dict(hspace=0.1,wspace=0.1))
for i,ax in enumerate(axes.flat):
ax.imshow(data[i].reshape(8,8), cmap='binary',interpolation='nearest',clim=(0,16))
plt.show()
plot_digits(example_digits)
pca = PCA(0.5)
pca.fit(noisy_digits)
输出:PCA(n_components=0.5)
pca.n_components_
输出:12
components = pca.transform(example_digits)
filtered_digits = pca.inverse_transform(components)
plot_digits(filtered_digits)