- 深入剖析 boost::unique_lock<boost::mutex>
程序员乐逍遥
C++Boost库C/C++多线程编程专题C++boost线程锁
在高并发的C++程序中,线程安全是永恒的主题。而boost::unique_lock作为Boost.Thread库中的核心组件,为开发者提供了强大、灵活且异常安全的互斥量管理机制。它不仅是RAII(ResourceAcquisitionIsInitialization)设计模式的典范,更是实现复杂线程同步逻辑的基石。一、从lock_guard的说起在介绍unique_lock之前,我们先回顾其“简
- xgboost原理
茶尽
阅读XGBoost与BoostedTree基学习器:CART每个叶子节点上面有一个分数不够厉害,所以找一个更强的模型treeensemble对每个样本的预测结果是每棵树预测分数的和目标函数采用boosting(additivetraining)方法,每一次都加入一个新的函数。依赖每个数据点上的误差函数的一阶导数和二阶导(区别于GBDT)。树的复杂度复杂度包含了一棵树里面的叶子个数和输出分数的L2模
- 【树模型与集成学习】(task6)梯度提升树GBDT+LR
山顶夕景
推荐算法#集成学习与KaggleGBDT推荐算法机器学习
学习总结(1)不同问题的提升树学习算法,主要区别在于使用的损失函数不同,如用平方误差损失函数的回归问题、用指数损失函数的分类问题、用一般损失函数的一般决策问题等。(2)不管是二分类问题的提升树,还是回归问题的提升树,这里的损失函数都很方便:前者是用指数损失函数,所以可以当做是Adaboost的个例,Aadaboost的流程;而后者是当使用平方误差损失时,可以直接拟合残差。而使用不同的损失函数,对应
- HarmonyOS Flutter Boost完全接入手册:爬完所有坑的实战指南
二蛋和他的大花
flutterharmonyharmonyosflutter华为
FlutterBoost在做混合开发非常实用,但官方文档的不清晰。本文将基于实战经验,帮助大家避开那些常见的坑,快速上手并高效开发。前言:为何要写这篇手册在开发过程中,我发现官方文档对于FlutterBoost的集成描述不够清晰,按照官方文档操作会遇到诸多问题。因此,我决定结合自己的实战经验,为大家提供一份详细且实用的集成手册,希望能帮助大家少走弯路。一、集成问题:从源码到har包的抉择在开发初期
- OCCT Handle 学习导论
心瞳几何原语
学习OCCTOCCTQt
基本设计思想这是一个侵入式智能指针(类似于boost::intrusive_ptr),引用计数器直接嵌入在被管理的对象中(Standard_Transient基类),而不是单独分配内存存储计数器。核心成员变量private:Standard_Transient*entity;//指向被管理对象的指针引用计数管理机制BeginScope()-增加引用计数voidBeginScope(){if(ent
- 机器学习-XGBoost和SHAP解析数据
python机器学习ML
机器学习人工智能数据分析python
一、引言在机器学习领域,XGBoost表现出色,具有高效性、准确性、灵活性和良好的防过拟合能力。高效性使其能快速处理大规模复杂数据,降低训练时间成本。通过组合弱学习器提高准确性和泛化能力。其支持多种任务和自定义指标,参数调优选项丰富。内置正则化机制防止过拟合。同时,SHAP对模型解释起关键作用,能计算特征的SHAP值来明确特征对预测结果的贡献,帮助理解模型决策。二、数据准备和模型训练1.导入所需库
- c++11智能指针
无敌的牛
C++学习c++开发语言
目录1.写在前面2.shared_ptr的循环引用问题3.weak_ptr介绍4.shared_ptr的线程安全问题5.C++11和Boost的关系6.内存泄漏7.如何检测内存泄漏8.如何避免内存泄漏1.写在前面上一节介绍智能指针的博客中,我们给出了智能指针实际是把资源委托给对象去管理的一种思想,让对象根据资源的生命周期自动调析构函数来释放资源,然后c++98设计的智能指针它支持拷贝但是它设计思想
- Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码matlab神经网络集成学习人工智能大数据深度学习机器学习
目录Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测的详细项目实例2项目背景介绍...2项目目标与意义...21.提高时序数据预测准确性...22.弱学习器组合的优势...33.提高数据预测的泛化能力...3
- 机器学习算法解析:XGBoost与LightGBM
AI天才研究院
AI人工智能与大数据AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习算法解析:XGBoost与LightGBM作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:XGBoost,LightGBM,高效特征选择,并行化训练,自动调参,弱分类器集成1.背景介绍1.1问题的由来随着数据科学和人工智能技术的发展,越来越多的问题需要利用机器学习算法进行解决。传统的一维决策树虽然直观且易于理解,但在面对高维度数据集时
- 数据处理和分析之分类算法:XGBoost:机器学习基础理论
kkchenkx
数据挖掘机器学习分类数据挖掘
数据处理和分析之分类算法:XGBoost:机器学习基础理论数据预处理与特征工程数据清洗数据清洗是数据预处理的第一步,旨在去除数据集中的噪声、不一致性和缺失值,确保数据的质量。这包括处理空值、异常值、重复数据和不一致的数据格式。示例:处理缺失值假设我们有一个包含用户年龄、性别和收入的数据集,其中年龄和收入字段存在缺失值。importpandasaspdimportnumpyasnp#创建示例数据集d
- 【独家原创】基于XGBoost+SHAP可解释性分析的分类预测 Matlab代码(多输入单输出)
机器学习和优化算法
SHAP(Matlab)机器学习分类XGBoostSHAPshap分析可解释性分析
目录1、代码简介2、代码运行结果展示3、代码获取1、代码简介(XGBoost+SHAP)基于XGBoost的数据多输入单输出+SHAP可解释性分析的分类预测模型由于XGBoost在使用SHAP分析时速度较慢,程序中附带两种SHAP的计算文件(正常版和提速版本),具体使用教程见使用步骤文件(你的数据适合哪种均有说明),十分简单用哪个调用哪个即可!!!1、在机器学习和深度学习领域,模型复杂度的不断攀升
- 做人脸识别遇到的问题
princesshu
pythonpycharm
最开始安装的时候直接用pipinstalldlib却一直显示错误提示“Failedbuildingwheelfordlib”之后去网上搜来了各种下载链接依然错误我发现问题是!!python版本问题,我下载所有的包都与我的python版本不匹配于是我先安装了cmakeboost之后最后直接在终端安好了dlib~
- flutter Boost android页面跳转到 Flutter 页面
戸田有希
flutterandroid
FlutterBoost:从Android跳转到Flutter页面本文将详细介绍如何使用FlutterBoost在Android应用程序中实现页面跳转到Flutter页面。FlutterBoost是一个可以帮助你在不同平台之间(Android和iOS)进行无缝跳转的工具。一、实现流程首先,让我们明确一下实现的流程。整个流程可以归纳为下表:步骤说明1创建FlutterModule2集成Flutter
- 真相曝光:佛萨奇Force原力元宇宙背后的故事和经济模型
口碑信息传播者
在数字化的浪潮中,佛萨奇2.0以其创新的智能合约系统,成为行业的焦点。不仅延续了经典的矩阵模式,还引入了NFT、BOOST矩阵、元宇宙等全新元素,展现出它对未来数字生态的深远布局。特别是结合NFT,佛萨奇2.0激发了无限的想象和可能。13分钟视频彻底弄明白佛萨奇Force原力元宇宙项目是什么佛萨奇2.0:智能合约的核心佛萨奇2.0的核心在于其智能合约系统。智能合约是存储在区块链上的自动执行程序,当
- 《How to Take Smart Notes》读书笔记1
LY320
最近在读一本书,题为《HowtoTakeSmartNotes:OneSimpleTechniquetoBoostWriting,LearningandThinking–forStudents,AcademicsandNonfictionBookWriters》1。尚未读完,分享一些读这本书的感想,我的一些心得,和不解。这本书让我觉得最有收获的点是更新了我对记录和整理笔记的认识。通常我们在记录笔记时
- boost::math模块使用 agm 以高精度计算 lemniscate 常量
源代码大师
Boost完整实战教程
boost::math模块使用agm以高精度计算lemniscate常量实现功能C++实现代码实现功能boost::math模块使用agm以高精度计算lemniscate常量C++实现代码#include#include#include
- C++常用库交叉编译方法(一)(环境构建和Qt以及Boost)
原文链接欢迎大家对于本站的访问-AsterCasc前言首先这里建议从Ubuntu20.04镜像开始,目前相对最稳定的版本,无论是CentOS还是其他版本的Ubuntu多多少少都会遇到各种很烦的问题,虽然说不是解决不了,但是从Ubuntu20.04容器镜像开始是最节省时间的方式,Docker默认情况下会让容器使用宿主机的大部分资源,包括CPU和内存,虽然具体的占用情况取决于宿主机的硬件资源和Dock
- 【亲测免费】 CatBoost 教程项目使用指南
CatBoost教程项目使用指南tutorials项目地址:https://gitcode.com/gh_mirrors/tutorials1/tutorials1.项目介绍CatBoost是一个高效、灵活且易于使用的梯度提升库,特别适用于处理分类特征。它由Yandex开发,广泛应用于机器学习和数据科学领域。CatBoost提供了丰富的功能,包括自动处理分类特征、支持GPU训练、内置的交叉验证和模
- 深入解析与彻底解决 Android 集成 Flutter Boost 时页面闪烁问题
二蛋和他的大花
flutterandroidflutter
在混合开发中,将Flutter模块集成到Android应用中是一种常见的需求。然而,许多开发者在集成过程中遇到了页面闪烁的问题,这严重影响了用户体验。本文将深入分析这一问题,并提供多种解决方案,帮助开发者彻底解决这一难题。一、页面闪烁问题分析集成方式:Flutter模块集成在Android的Fragment中。从原生页面返回Flutter页面时,带有动画的组件出现闪烁。问题表现:从原生页面返回Fl
- python和C++相互调用使用
妄想出头的工业炼药师
c++开发语言
结论:首选PyBind11:综合性能、易用性最佳(GitHub⭐48k+)优先考虑Cython:涉及大量科学计算或已有Cython代码避免Boost.Python(历史包袱重)和SWIG(配置复杂),除非维护旧项目。python调用C++接口C++调用python接口在C++中使用Python库,特别是使用pybind11,是一个非常强大的方法,可以让你在C++项目中轻松地利用Python的强大功
- Outcome 使用教程
Outcome使用教程outcomeProvidesverylightweightoutcomeandresult(non-Boostedition)项目地址:https://gitcode.com/gh_mirrors/ou/outcome1.项目介绍Outcome是一个C++14库,用于报告和处理函数失败。它可以作为异常处理机制的替代或补充。在某些场景下,使用C++的异常处理可能不合适,例如异
- 【Elasticsearch】自定义评分检索
G皮T
#Elasticelasticsearch大数据自定义评分查询检索_score搜索引擎
自定义评分检索1.自定义评分2.为什么需要自定义评分3.搜索结果相关度4.影响相关度评分的查询子句5.控制相关度评分的方法5.1FunctionScoreQuery5.1.1基础查询部分5.1.2评分函数部分(functions数组)第一个函数:品牌加权第二个函数:销量因子第三个函数:时间衰减5.1.3评分组合方式score_modeboost_mode5.1.4整体效果5.2使用Boosting
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- Docker 容器全生命周期操作指南
以下是Docker容器全生命周期操作指南,按步骤清晰划分,涵盖从镜像加载到容器销毁的完整流程:一、镜像加载与验证1.从.tar文件加载镜像sudodockerload-iubuntu18.04-boost1.88-cmake3.27-git_1.0.tar2.查看已加载的镜像sudodockerimages输出示例:REPOSITORYTAGIMAGEIDCREATEDSIZEubuntu18.0
- 深度剖析:OPENPPP2 libtcpip 实现原理与架构设计
liulilittle
网络智能路由器c++开发语言tcptcp/ip通信
️一、核心架构设计(可视化图表)1.1整体架构图物理网络TAP/TUN设备原始数据包libtcpip输入层LWIP协议栈Netstack转换层Boost.AsioSocket目标服务libtcpip输出层1.2分层架构图内核空间用户空间内核网络栈IP协议处理网络接口层TCP/UDP协议栈Socket转换层系统Socket接口物理网络⚙️二、LWIP协议栈集成剖析2.1LWIP定制化实现//内存管理
- Boostrap方法的理解及应用
Xiaofei@IDO
统计学概率论机器学习数据挖掘
1、Boostrap介绍1.1概念性解释Boostrap统计学方法是一种非参数检验方法,用于估计各种统计量的置信区间。Boostrap计算步骤简单的描述为:通过有放回的数据集的重采样,产生一系列的待检验统计量的Boostrap经验分布。基于该分布,计算标准误差,构建置信区间,并对多种类型的样本进行统计信息和假设检验。Boostrap统计学方法使用范围比较广,因为它不需要假定数据服从特定的理论分布(
- 【集成学习】Bagging、Boosting、Stacking算法详解
文章目录1.相关算法详解:2.算法详细解释:2.1Bagging:2.2Boosting:2.3Stacking:2.4K-foldMulti-levelStacking:集成学习(EnsembleLearning)是一种通过结合多个模型的预测结果来提高整体预测性能的技术。它通过将多个学习器的结果集成起来,使得最终的模型性能更强,具有更好的泛化能力。常见的集成学习框架包括:Bagging、Boos
- 机器学习-三大SOTA Boosting算法总结和调优
小新学习屋
机器学习机器学习boosting集成学习决策树人工智能
参考书籍:《机器学习公式推导和代码实现》书籍页码:P197~205简介除了深度学习适用的文本、图像、语音、视频等非结构化数据,对于训练样本较少的结构化数据,Boosting算法仍是第一选择。XGBoost、LightGBM、CatBoost是目前经典的SOTABoosting算法算法对比维度XGBoostLightGBMCatBoos说明算法的继承性是对GBDT的改进是对XGBoost的改进是对X
- Boost.Asio 的 TCP 通信教程
FHKHH
网络编程tcp/ip网络协议网络
一、引言本教程将详细介绍如何使用Boost.Asio库实现一个简单的TCP通信示例,包括服务器端和客户端的代码编写、编译以及运行流程。同时,我们会对通信过程中的各个关键步骤进行详细讲解,帮助读者理解TCP通信在Boost.Asio中的实现方式。后续如果需要扩展功能,例如并发处理多个客户端连接或使用异步通信等,可以在此基础上进行修改。二、准备工作确保系统中已安装Boost库。确保编译器(如g++)能
- Boost.Asio 同步读写操作详解
Boost.Asio同步读写操作详解Boost.Asio是一个高效的C++网络和底层I/O库,提供了多种API用于同步和异步数据传输。本文将详细介绍同步操作及其具体实现,包括write_some、send、write、read_some、receive、read和read_until等。1.同步写:write_some功能:将指定数量的字节写入到套接字。如果发送缓冲区已满,则只写入一部分数据并返回
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟