- 打电话识别误报率↓82%:陌讯轻量化部署算法实战解析
2501_92474790
人工智能算法智慧城市计算机视觉目标检测目标跟踪
原创声明:本文内容基于独立技术解析,部分数据引用自“陌讯技术白皮书”,严禁未经授权转载。摘要:针对边缘计算优化和复杂场景鲁棒性挑战,本文解析陌讯视觉算法在打电话识别中的轻量化部署方案。实测显示,该方案在误报率指标上较基线提升显著,适用于安防监控等场景。一、行业痛点打电话识别在安防监控中面临严峻挑战。行业报告显示,公共场所有效行为识别误报率超35%(来源:2024年《智能安防白皮书》)。具体难点包括
- AI人工智能中LSTM在视频行为识别的应用
AI人工智能中LSTM在视频行为识别的应用关键词:LSTM、视频行为识别、深度学习、时序建模、计算机视觉、神经网络、动作识别摘要:本文将深入探讨LSTM(长短期记忆网络)在视频行为识别领域的应用。我们将从基础概念出发,逐步讲解LSTM如何解决视频时序建模的挑战,分析其核心算法原理,并通过实际代码示例展示LSTM在行为识别中的具体实现。文章还将探讨当前的应用场景、工具资源以及未来发展趋势,为读者提供
- Java 大数据在智能教育在线实验室设备管理与实验资源优化中的应用
知识产权13937636601
计算机java大数据开发语言
全球教育实验室设备年闲置率超35%,而高峰时段实验排队长达2.3周。某“双一流”高校部署本系统后,设备利用率从41%提升至89%,平均实验等待时间缩短78%。本文提出基于Java大数据技术的智慧实验室解决方案:多源设备管控中枢:通过OPCUA/Modbus转换器接入87类、4.2万台异构设备动态调度引擎:融合强化学习与图算法实现设备-课程-学生的秒级最优匹配安全双保险机制:毫米波雷达行为识别+试剂
- 【实战】基于 Tauri 和 Rust 实现基于无头浏览器的高可用网页抓取
Sopaco
rust开发语言后端
一、背景在SagaReader的早期版本中,存在对网页内容抓取成功率不高的问题。主要原因是先前采用的方案为后台进程通过reqwest直接发起GET请求获取网站HTML的方案,虽然仿真了Header内容,但仍然会被基于运行时的反爬机制(如Browser指纹交叉验证、运行时行为识别、动态渲染等)所屏蔽。这导致我们无法稳定、可靠地获取内容,影响应用的可用性。为了解决这一痛点,我们优化了更新机制。利用Ta
- 使用MATLAB和Simulink来设计并仿真一个智能家居基于机器视觉的安全监控系统
amy_mhd
matlab智能家居开发语言
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:构建图像采集模块第三步:实现图像预处理第四步:设计背景建模与差分第五步:实现特征提取与行为识别第六步:设计响应机制第七步:搭建用户界面(可选)第八步:运行仿真并分析结果注意事项智能家居中基于机器视觉的安全监控系统通过摄像头捕捉图像,并利用图像处理和机器学习算法来分析这些图像,以实现诸如入侵检测、异常行为识别等功能。这种系统可以极大
- 动态神经网络(Dynamic NN)在边缘设备的算力分配策略:MoE架构实战分析
学术猿之吻
神经网络架构人工智能算法量子计算深度学习机器学习
一、边缘计算场景的算力困境在NVIDIAJetsonOrinNX(64TOPSINT8)平台上部署视频分析任务时,开发者面临三重挑战:动态负载波动视频流分辨率从480p到4K实时变化,帧率波动范围20-60FPS能效约束设备功耗需控制在15W以内(被动散热)多任务耦合典型场景需同步处理:目标检测(YOLOv8s)行为识别(SlowFast)语义分割(DeepLabv3)二、MoE架构的核心技术解析
- CC攻击防护:从特征过滤到行为识别
群联云防护小杜
安全问题汇总排序算法算法服务器运维自动化人工智能压力测试
一、现有方案的缺陷传统CC防护依赖频率统计,易误伤正常用户。例如:defblock_cc_attack(traffic):ip_count=count_requests_by_ip(traffic)forip,countinip_count.items():ifcount>1000:#简单阈值判定block_ip(ip)此方法无法识别慢速CC攻击,且误封率高达15%。二、基于行为分析的解决方案1.
- 基于BYOL的视频行为识别优化
AI天才研究院
LLMAgent应用开发AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于BYOL的视频行为识别优化作者:禅与计算机程序设计艺术1.背景介绍1.1视频行为识别的重要性和挑战视频行为识别是计算机视觉领域中一个重要的研究方向,其目标是从视频序列中识别出人的行为动作,例如行走、跑步、跳跃、跌倒等。近年来,随着深度学习技术的发展,视频行为识别技术取得了显著的进步,并在安全监控、人机交互、自动驾驶等领域得到了广泛的应用。然而,视频行为识别仍然面临着许多挑战:视频数据复杂性高:
- 智能视频分析系统
ARM2NCWU
音视频
智能视频分析系统是基于人工智能、机器视觉和大数据技术的综合型监控解决方案,其核心功能与应用场景如下:一、核心功能实时视频流处理系统可对实时视频流进行毫秒级响应分析,识别并跟踪目标对象(如人脸、车辆、特定物体),支持多分屏显示和全屏浏览模式。目标检测与跟踪通过运动检测技术分离动态目标与背景,并利用深度学习算法持续跟踪目标轨迹,确保复杂场景下的精准定位。智能事件分析与预警基于行为识别模型,系统可
- AI视觉觉醒:深度学习如何革新视频标注,释放数据潜力基于深度学习的视频自动标注系统
海棠AI实验室
AI理论探索与学术前沿人工智能深度学习音视频
目录引言:被忽视的视频数据金矿传统视频标注的困境:效率、成本与瓶颈深度学习:视频自动标注的破局之道深度学习视频自动标注系统架构系统架构图核心技术解析目标检测(ObjectDetection)行为识别(ActionRecognition)视频分割(VideoSegmentation)代码实践:基于YOLOv5的目标检测视频标注示例挑战与未来展望结语:AI赋能,释放视频数据的无限可能引言:被忽视的视频
- DeepSeek在地铁应急响应与处理中的具体实现方案,包括技术架构、功能实现和代码示例:
人工智能专属驿站
架构计算机视觉
以下是关于DeepSeek在地铁应急响应与处理中的具体实现方案,包括技术架构、功能实现和代码示例:1.事件检测与预警技术实现:视频监控与传感器数据融合:利用地铁站内的视频监控系统和传感器(如烟雾传感器、压力传感器)实时采集数据。通过深度学习算法(如目标检测和行为识别)对视频流进行分析,结合传感器数据,快速识别突发事件。自动警报触发:一旦检测到异常事件(如火灾、拥挤踩踏),系统立即通过预设的警报机制
- 计算机视觉国内外研究现状(综述)
埃菲尔铁塔_CV算法
计算机视觉
1.国内外研究进展1.2.1特征提取研究进展特征提取是图像处理的一个重要环节,是进行身份识别和行为识别的重要部分。近年来,针对不同特征的提取,国内外学者提出了许多特征提取算法,同样特征提取的效果大都不错。但是在复杂的猪舍环境中提取猪的特征还是比较困难的。下面针对几种目前常用的特征提取算法进行一些介绍。(1)传统的特征提取算法传统特征提取算法已经发展了很久,现阶段比较成熟,是深度学习算法出来之前研究
- 基于深度学习的行人摔倒检测识别系统 —— 使用YOLOv5实现行人摔倒检测
2025年数学建模美赛
深度学习YOLO人工智能yoloui
目录引言项目背景与目标1.1项目背景1.2项目目标系统设计与架构2.1系统功能概述2.2系统架构数据准备与处理3.1数据集选择与收集3.2数据标注3.3数据集划分YOLOv5模型训练与优化4.1YOLOv5配置文件4.2安装YOLOv5并开始训练4.3模型评估与优化摔倒行为识别与推理5.1加载模型进行推理5.2UI界面设计5.3实时检测总结未来展望引言行人摔倒检测(FallDetection)系统
- 打架检测系统:基于YOLOv5的实时人群打架行为识别
2025年数学建模美赛
YOLO深度学习ui计算机视觉视觉检测
1.引言打架检测,作为一个复杂且具有挑战性的任务,已经在多个领域展现出其巨大的应用潜力,尤其是在公共安全监控、安防摄像头、智能城市等应用场景中。通过深度学习技术,尤其是基于YOLOv5的目标检测,我们能够对实时视频流中的人群行为进行实时监控,并有效地检测和识别人群中的打架行为。本博客将详细介绍如何使用YOLOv5模型搭建一个打架检测系统,包含数据集准备、YOLOv5训练、UI界面设计以及优化和部署
- kinetics-skeleton格式行为数据提取方法
青年夏日科技工作者
python人工智能深度学习
用自建kinetics-skeleton行为识别数据集训练st-gcn网络流程记录,利用Lightweight-OpenPose生成kinetics-skeleton格式数据0.准备工作1.下载/裁剪视频2.利用OpenPose提取骨骼点数据,制作kinetics-skeleton数据集3.训练st-gcn网络4.用自己训练的st-gcn网络跑demo,并可视化0.准备工作首先就是把st-gcn网
- 行为识别的方法
人工智能专属驿站
深度学习
行为识别主要有以下几大类方法,每类方法各有特点及典型算法:传统方法特点:利用手工设计特征对行为进行表征,再用统计学习的分类方法进行识别。需一定专业知识设计特征,耗费人力物力,对复杂场景、遮挡等适应性差,但对简单背景、规则动作识别效果尚可。典型算法:时空关键点(Space-TimeInterestPoints):基于视频图像中的关键点在时空维度上的变化来提取动作特征,但可能忽略视频细节,泛化能力较弱
- 校园打架行为识别检测系统 YOLOv5
燧机科技SuiJi
YOLO人工智能python计算机视觉开发语言
校园打架行为识别检测系统基于python深度学习框架+边缘分析技术,校园打架行为识别检测系统自动对校园监控视频图像信息进行分析识别。校园打架行为识别检测系统利用学校监控对校园、广场等区域进行实时监测,当监测到有人打架斗殴时,系统立即抓拍存档语音提醒,并将打架行为回传给学校监控后台,提醒后台人员及时处理打架情况。在YOLO系列算法中,针对不同的数据集,都需要设定特定长宽的锚点框。在网络训练阶段,模型
- <数据集>考场行为识别数据集<目标检测>
深度学习lover
深度学习数据集目标检测人工智能计算机视觉pythonYOLO
数据集格式:VOC+YOLO格式图片数量:2192张标注数量(xml文件个数):2192标注数量(txt文件个数):2192标注类别数:2标注类别名称:['cheating','good']序号类别名称图片数框数1cheating128214412good10671261使用标注工具:labelImg标注规则:对类别进行画水平矩形框图片示例:标注示例:
- 邮件服务器管理软件,U-Mail 邮件服务器软件(邮件系统)
weixin_39730587
邮件服务器管理软件
U-Mail是安全高速的全功能电子邮件服务器系统,融合强大的功能与简易高效的管理为一体,提供最佳的企业级邮箱服务器系统解决方案。内嵌顶级杀毒引擎;基于行为识别和热点等专利技术的反垃圾过滤引擎;终身免费升级;纯WEB管理;提供一站式全程服务!◇全球收发保证!即使您服务器的IP在对方的垃圾邮件黑名单中,邮件照发不误。◇邮件监控、收发审核!企业管理层可以根据实际的需要进行相关监控审核条件的设定。◇业界最
- 关于学生课堂行为识别算法
NineDays66
算法行为识别深度学习学生行为分析考试分析
目前基于针对学校做了一款考生行为识别算法,算法可以在服务器部署,也可以在前端设备如Jetson、RK等边缘设备运行,目前算法已经投入使用,算法效果如下目前算法在2080Ti服务器运行效率是150帧每秒算法运行平台模型大小吞吐量张/秒PC-2080TI50M150ARM-RK3399PRO10M10行为类别划分如下:学生未到、存在空位学生双手放在桌子下学生左、右看学生传纸条学生举手学生爬桌子睡觉学生
- 物业服务企业做好专业化,才能多元化
王海波w
物业服务企业做好专业化,才能谈未来发展的多元化。根据质量管理体系的标准,其中人员标准和管理标准尤为重要,很多企业只是做了标准化的表面文章,一个想要做出成绩的物业服务企业,要绝对深层次挖掘标准化内涵。CIS形象识别系统行为识别,是企业人力资源管理标准化的具体体现。图片发自App物业服务企业员工行为规范,仪容仪表,自然大方得体,符合工作需要及安全规则。行为举止,姿态端正,工作中做到走路轻,说话清,操作
- 代理IP技术在云函数中的创新应用与拓展空间
小文没烦恼
服务器linux运维pythontcp/ip
目录前言一、代理IP技术的基本概念和原理二、云函数的基本原理和优势1.弹性伸缩2.省时省力3.按需计费三、代理IP技术在云函数中的创新应用1.反爬虫技术2.访问安全性和隐私保护3.地理定位和访问控制四、代理IP技术在云函数中的拓展空间1.代理IP池的管理和优化2.用户行为分析和行为识别3.安全审计和访问控制五、代码实例六、总结前言随着云计算技术的发展和普及,云函数作为一种基于事件驱动的计算模型,已
- 多只动物3D姿态估计与行为识别系统
tzc_fly
论文阅读笔记人工智能
动物社会行为的量化是动物科学研究的重要步骤。虽然现有的深度学习方法已经实现了对常见动物的精确姿态估计、识别和行为分类,但由于缺乏注释良好的数据集,其应用依然受到挑战。因此该研究展示了一个计算框架,即社会行为图谱(SBeA,SocialBehaviorAtlas),用于克服由有限数据集引起的问题。SBeA使用数量很少的labelledframes进行多个动物的3D姿态估计,实现后续的无标签识别。SB
- 第一周文献阅读报告
半个轮子工
论文阅读物联网
文献阅读报告泛读1.《毫米波与太赫兹技术》2.《基于物联网的智能养老系统》3.《基于空间聚类的FMCW雷达双人行为识别方法》4.《太赫兹应用分析和展望》5.《车载毫米波雷达应用研究》6.《基于压力传感器的跌倒检测系统研究》7.《基于隐马尔可夫模型的老年人跌倒行为检测方法研究望》8.《矿用卡车毫米波雷达防碰撞系统的研究与应用》9.《基于YOLO网络的人体跌倒检测方法》10.《基于多传感器融合的老人跌
- 打击欺诈活动:如何利用羊毛盾API保护用户与业务安全
API小百科_APISpace
前言随着互联网的不断发展,欺诈活动也日益猖獗。针对企业和用户的欺诈行为可能导致财务损失、声誉受损以及用户信任的丧失。为了保护用户与业务安全,反欺诈技术成为了企业不可或缺的防线之一。在这方面,羊毛盾API作为一种智能反欺诈工具,发挥着越来越重要的作用。反欺诈(羊毛盾)API的作用image.png如何保护用户安全?1.欺诈行为识别反欺诈(羊毛盾)API通过收集和分析大量的用户行为数据,建立了模型和算
- 人类行为动作数据集大合集
地理探险家
用于深度学习的数据集行为动作人类数据集图像深度学习
最近收集了一大波关于人类行为动作的数据集,主要包括:动作识别、行为识别、活动预测、动作行为分类等数据集。废话不多说,接下来就给大家介绍这些数据集!!1、用于自动视频编辑的视频Blooper数据集用于自动视频编辑的视频Blooper数据集数据说明:根据网上的消息,基本的视频编辑每分钟需要30分钟到一个小时。这就不鼓励用户制作周期性的内容。目前,自动视频编辑仅限于视频增强和简单的机制,如沉默或鼓掌检测
- YOLO+SlowFast+DeepSORT 简单实现视频行为识别
AAI机器之心
YOLO音视频云计算openstack大数据深度学习python
前段时间刷短视频看到过别人用摄像头自动化监控员工上班状态,比如标注员工是不是离开了工位,在位置上是不是摸鱼。虽然是段子,但是这个是可以用识别技术实现一下,于是我在网上找,知道发现了SlowFast,那么下面就用SlowFast简单测试一下视频的行为识别。工具简介YOLOYOLO是一个基于深度学习神经网络的对象识别和定位算法,前面我也用v5s训练了标注的扑克牌,实现了图片或视频中的点数识别,这里就跳
- AI:116-基于深度学习的视频行为识别与分析
一见已难忘
精通AI实战千例专栏合集人工智能深度学习音视频视频行为识别与分析
点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~你的技术旅程将在这里启航!从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。✨✨✨每一个案例都附带有在本地跑过的关键代码,详细讲解供大家学习,希望可以帮到大家。欢迎订阅支持,正在不断更新中~一.基于深度学习的视频行为识别与分析随着人工智能技术的迅猛发展,深度学习成为视频行为识别与分析领域的重要推动
- YOLO+SlowFast+DeepSORT 简单实现视频行为识别
北桥苏
YOLOpython人工智能
前言前段时间刷短视频看到过别人用摄像头自动化监控员工上班状态,比如标注员工是不是离开了工位,在位置上是不是摸鱼。虽然是段子,但是这个是可以用识别技术实现一下,于是我在网上找,知道发现了SlowFast,那么下面就用SlowFast简单测试一下视频的行为识别。工具简介YOLOYOLO是一个基于深度学习神经网络的对象识别和定位算法,前面我也用v5s训练了标注的扑克牌,实现了图片或视频中的点数识别,这里
- 基于轻量级神经网络GhostNet开发构建光伏太阳能电池缺陷图像识别分析系统
Together_CZ
神经网络人工智能深度学习
工作中经常会使用到轻量级的网络模型来进行开发,所以平时也会常常留意使用和记录,在前面的博文中有过很多相关的实践工作,感兴趣的话可以自行移步阅读即可。《移动端轻量级模型开发谁更胜一筹,efficientnet、mobilenetv2、mobilenetv3、ghostnet、mnasnet、shufflenetv2驾驶危险行为识别模型对比开发测试》《基于Pytorch框架的轻量级卷积神经网络垃圾分类
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL