- Python, C ++开发全国研学基地查询与管理APP
Geeker-2025
pythonc++
以下是基于Python和C++开发全国研学基地查询与管理APP的技术方案,结合高性能数据处理、混合语言开发及教育行业合规性要求:---###**一、核心功能架构**```mermaidgraphTDA[用户端APP]-->B{API网关}C[管理端平台]-->BB-->D[Python业务微服务]D-->E[C++数据处理引擎]D-->F[时空数据库集群]E-->G[智能推荐系统]F-->H[可视
- 因果推断推荐系统工具箱 - PRS(二)
processor4d
文章名称【WSDM-2021】【UniversityofVirginia-Google】Non-ClicksMeanIrrelevant?PropensityRatioScoringAsaCorrection核心要点上一节讲解了在unbiasL2R的场景中,基于pairwise比较的损失函数的IPS的方法存在与真实评估指标偏离的问题,这一节讲解如何环节这一问题,并学习模型参数。方法细节问题引入作者
- 深入理解 Top-K 问题:高效的 nlogk 算法及 C++ 实现
在日常开发和算法面试中,Top-K问题是一类非常常见的场景。例如"找出数组中前K个最大的元素"、"统计热门搜索词"、"推荐系统中的热门商品"等,都可以归结为Top-K问题。本文将详细讲解如何用时间复杂度为O(nlogk)的高效算法解决这类问题,并通过C++代码实现具体方案。一、什么是Top-K问题?Top-K问题可以抽象为:从含有n个元素的集合中,找出其中最大(或最小)的k个元素。常见的应用场景包
- 玩转 Milvus(二):在 Ubuntu 22.04(WSL2)上安装 Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
玩转Milvus(二):在Ubuntu22.04(WSL2)上安装Milvus引言:让Milvus在你的笔记本上“起飞”在《玩转Milvus(一)》中,我们揭开了向量数据库的神秘面纱,认识了Milvus作为AI时代的“超级引擎”,如何驱动智能搜索、推荐系统和多模态应用。现在,是时候让Milvus在你的电脑上“落地生根”了!本篇博客将带你在Ubuntu22.04(WSL2)环境下安装Milvus,聚
- 双塔模型(Two-Tower Model)推荐系统实践
双塔模型双塔模型(Two-TowerModel)是一种常用的推荐系统或搜索排序模型架构,由两个独立的神经网络(即“双塔”)组成,分别处理用户和物品的特征,最后通过相似度计算(如点积、余弦相似度)得到匹配分数。Rust因其高性能和安全性,适合实现此类模型。双塔模型的定义双塔模型(Dual-TowerModel)是一种深度学习架构,由两个独立的神经网络塔(Tower)组成,分别处理不同的输入数据,最后
- KNN 算法进阶:从基础到优化的深度解析
二向箔reverse
人工智能机器学习
在机器学习的广袤领域中,K-近邻算法(K-NearestNeighbors,KNN)以其简洁直观的理念,宛如一颗璀璨的明星,照亮了无数初学者踏入机器学习大门的道路。自1951年由EvelynFix和JosephHodges创立,并经ThomasCover进一步完善以来,KNN算法凭借其独特的魅力,在数据挖掘、推荐系统、物联网等众多领域发挥着中流砥柱的作用,成为了监督学习算法家族中不可或缺的一员。一
- 基于Android studio的城市景区旅游导航与推荐系统
QQ242219979
androidstudio旅游android
随着时代的发展和进步,越来越多人选择在空闲的时间出去旅游,人们要前往陌生的城市旅游,就不可避免地会出现迷路,不知道景点等情况,基于此,旅游app变成了游客的热门选择,兼顾导航与热门景点推荐,方便游客查询路线的同时也能为游客推荐一些热门的旅游景点,让游客更加方便快捷的找到想去的地方,有一个更加舒适的旅游体验。苏州作为热门旅游城市,其中姑苏区经典密集,但是路线复杂,人流密集,游客来到这里,不知道该去哪
- 推荐系统如何开发
一行代码通万物
python人工智能推荐系统
推荐系统实现了基于协同过滤的推荐功能支持两种推荐模式:基于用户的协同过滤(寻找相似用户喜欢的物品)基于物品的协同过滤(寻找相似物品)主要功能:数据加载(支持自定义数据或内置的MovieLens数据集)模型训练模型评估(计算RMSE和MAE指标)为指定用户生成推荐列表使用前需要安装依赖库:pipinstallsurprisepandasnumpy可以通过修改sim_options参数来调整相似度计算
- (附源码)计算机毕业设计SSM健康饮食推荐系统
学姐计算机毕设程序
mybatisjavamysql
(附源码)计算机毕业设计SSM健康饮食推荐系统项目运行环境配置:Jdk1.8+Tomcat7.0+Mysql+HBuilderX(Webstorm也行)+Eclispe(IntelliJIDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:SSM+mybatis+Maven+Vue等等组成,B/S模式+Maven管理等等。环境需要1.运行环境:最好是javajdk1.8,我们在这
- 如何面试AI产品经理职位?
从美团AI产品经理岗位的面试题来看,该岗位要求技术深度、产品思维和伦理意识的高度融合。以下是系统分析及准备建议:一、AI产品经理核心职责技术桥梁:将业务需求转化为技术方案(如LLM优化、推荐系统设计)全链路管理:主导AI产品从需求分析、模型选型、效果验证到上线的全流程风险控制:识别并解决模型偏见、幻觉、数据安全等伦理风险性能优化:平衡算法效果与工程约束(如推理速度、资源消耗)价值量化:设计评估体系
- Python全站爬取与知识图谱构建实战:从数据采集到语义建模的全流程指南
Python爬虫项目
python知识图谱easyui信息可视化开发语言爬虫人工智能
引言随着信息爆炸时代的到来,如何系统化地获取并结构化网站上的海量信息,成为数据科学和人工智能领域的重要课题。知识图谱作为将结构化数据和语义联系可视化的强大工具,正广泛应用于搜索引擎、推荐系统、智能问答等领域。本文将系统讲解如何用Python实现对目标网站的全站爬取,并结合自然语言处理技术,自动抽取实体与关系,最终构建成知识图谱。全流程涵盖爬取策略、信息抽取、知识融合及可视化,配合丰富的代码示例,助
- 使用 QLExpress 构建灵活可扩展的业务规则引擎
目录一、什么是QLExpress?二、推荐系统中的规则脚本应用1场景描述2推荐规则脚本(QLExpress)3系统实现4执行结果5推荐系统应用建议三、风控系统中的规则判定1场景描述2风控规则脚本(QLExpress)3系统实现4执行结果5风控系统应用建议四、设计建议在大型系统中,规则引擎的存在使业务逻辑从代码中解耦出来,使得系统具备更高的灵活性与可维护性。阿里巴巴开源的QLExpress正是一款轻
- 基于定制开发开源AI智能名片S2B2C商城小程序源码的搜索框个性化推荐机制研究
摘要:本文聚焦于定制开发开源AI智能名片S2B2C商城小程序源码场景下的搜索框个性化推荐机制。通过分析搜索框作为信息流槽位的产品形态特性,结合开源AI大模型与S2B2C模式的技术融合优势,提出基于用户强兴趣/即时兴趣的动态推荐策略。研究揭示了定制化开发在破解传统搜索框静态局限中的关键作用,并通过实证案例验证了该机制对提升用户转化率与平台GMV的显著效果,为新零售场景下的智能推荐系统设计提供了理论依
- Eureka在大数据推荐系统中的服务治理实践
大数据洞察
eureka大数据云原生ai
Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析元数据框架标题:Eureka在大数据推荐系统中的服务治理实践:从理论到落地的全面解析关键词:Eureka;服务治理;大数据推荐系统;分布式架构;服务发现;高可用性;动态扩展摘要:本文结合Eureka的核心特性与大数据推荐系统的需求,从第一性原理推导、架构设计、实现机制到实际应用,全面解析Eureka在推荐系统中的服务治理实践。通过
- 向量数据库FAISS/Chromadb/ES/milvus简单概述
FAISSFAISS(FacebookAISimilaritySearch)是一种高性能的向量相似性搜索库,用于在大规模向量数据集中快速搜索最相似的向量。它是由FacebookAIResearch开发的,旨在解决大规模向量搜索的问题,广泛应用于各种领域,如图像搜索、文本搜索、推荐系统等。FAISS的主要特点和优势如下:高效的相似性搜索:FAISS使用了一系列高效的算法和数据结构,如倒排索引、局部敏
- AI原生应用中的用户画像构建:从理论到实践全解析
AI原生应用中的用户画像构建:从理论到实践全解析关键词:用户画像、AI原生应用、特征工程、机器学习、个性化推荐、数据隐私、模型优化摘要:本文全面解析AI原生应用中用户画像构建的全过程,从基础概念到核心技术,再到实际应用和未来趋势。我们将用通俗易懂的方式讲解用户画像如何像"数字身份证"一样工作,深入探讨特征提取、模型构建等关键技术,并通过实际案例展示用户画像在推荐系统、精准营销等场景中的应用。文章还
- 怎么能得到各种淘宝优惠券呢?领取淘宝优惠券的平台有哪些?
氧惠评测
要得到各种淘宝优惠券,可以通过以下几种途径:一、使用第三方优惠券平台除了直接在淘宝平台领取外,还可以使用第三方优惠券平台来获取更多的优惠券资源。这些平台通常会与淘宝商家合作,提供额外的优惠券和返利服务。以下是一些常见的领取淘宝优惠券的平台:氧惠APP特点:氧惠APP不仅提供了淘宝的优惠券,还涵盖了其他主流电商平台和生活服务平台,如美团、饿了么等。它以其全面的优惠信息和精准的推荐系统赢得了用户的喜爱
- 智能体学习记录 一
罗同学213
学习
智能体是什么智能体(IntelligentAgent)是一种能够感知周围环境、自主决策并执行行动以实现特定目标的智能化系统或程序。它可以是软件(如聊天机器人)、硬件(如机器人),或两者结合的实体,核心特征包括:自主性:无需人工实时干预,独立运行(如自动驾驶车辆避障)。反应性:实时感知环境变化并快速响应(如智能家居调节温度)。目标导向:基于预设目标优化行动(如推荐系统最大化用户点击率)。学习能力:通
- java毕业设计源码案例-基于ssm+协同过滤的个性化小说推荐系统设计与实现(源码+LW+部署文档+全bao+远程调试+代码讲解等)
项目帮
springbootjava计算机毕设java课程设计开发语言
博主介绍:✌️码农一枚,专注于大学生项目实战开发、讲解和毕业文撰写修改等。全栈领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌️技术范围::小程序、SpringBoot、SSM、JSP、Vue、PHP、Java、python、爬虫、数据可视化、大数据、物联网、机器学习等设计与开发。主要内容:免费功能设计,开题报告、任务书、全b
- 机器学习中的数据预处理:从入门到实践
耐思nice~
机器学习由浅入深-吴恩达机器学习人工智能
在当今的智能时代,机器学习已经渗透到我们生活的方方面面。比如我们常用的推荐系统,它能根据我们的浏览记录精准推送喜欢的商品或视频,这背后就离不开机器学习的支撑。而一个优秀的机器学习模型,离不开高质量的数据,数据预处理正是保证数据质量的关键环节,它就像烹饪前的食材处理,直接影响着最终“菜品”的口感,也就是模型的性能。今天,我们就来全面学习机器学习中数据预处理的关键步骤。一、数据预处理的重要性数据预处理
- 打造智能资讯引擎:基于 Python 的新闻数据爬取与个性化推荐系统实战全流程解析
程序员威哥
最新爬虫实战项目python开发语言
前言:数据时代的信息洪流,如何做到“千人千面”?在信息爆炸的时代,每天都有成千上万条新闻资讯涌现。如何从海量内容中挖掘出用户感兴趣的资讯?这不仅仅是爬虫技术的问题,更是数据建模与智能推荐算法的落地挑战。本篇文章将带你从零出发,构建一个具有实际应用价值的“个性化新闻阅读推荐系统”,从数据采集(爬虫)、文本处理(NLP)、兴趣建模(TF-IDF/协同过滤/Embedding)到推荐展示,覆盖整个推荐系
- 计算机视觉产品推荐,个性化推荐:人工智能中的计算机视觉、NLP自然语言处理和个性化推荐系统哪个前景更好一些?...
这个问题直接回答的话可能还是有着很强的个人观点,所以不如先向你介绍一些这几个领域目前的研究现状和应用情况(不再具体介绍其中原理)你自己可以斟酌一下哪方面更适合自己个性化推荐。一.所谓计算机视觉,是指使用计算机及相关设备对生物视觉的一种模拟个性化推荐。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样[1]。现在人工智能的计算机视觉主要研究
- RabitQ 量化:既省内存又提性能
大禹智库
《向量数据库指南》《实战AI智能体》人工智能AI自动化大禹智库AI智能体向量数据库
突破高维向量内存瓶颈:MlivusCloudRaBitQ量化技术的工程实践与调优指南作为大禹智库高级研究员,拥有三十余年向量数据库与AI系统架构经验的我发现,在当今多模态AI落地的核心场景中,高维向量引发的内存资源消耗问题已成为制约系统规模化部署的“卡脖子”因素。特别是在大规模图像检索、个性化推荐系统和语义搜索引擎中,动辄数亿级别的向量数据需要实时处理,传统全精度索引方式会让内存资源消耗呈指数级增
- 基于用户画像的商品推荐系统
Dush32
机器学习人工智能python推荐算法
随着人工智能和大数据技术的进步,产品推荐系统成为了现代广告与电商平台中不可或缺的部分。通过深度挖掘用户的行为数据,能够为广告主提供精准的用户画像,从而更高效地推荐相关产品,提升购买转化率。本项目基于科大讯飞AI营销云大赛的赛题,目的是利用用户画像进行产品推荐,预测用户是否会购买相应商品。我们使用了机器学习的二分类模型,通过分析用户的性别、年龄、常驻地、机型等信息,来判断用户的付费行为。项目目标:本
- SpringBoot服装推荐系统实战
KENYCHEN奉孝
javaAIspringboot后端人工智能
SpringBoot服装推荐系统实例以下是基于SpringBoot实现的服装推荐系统的30个实例代码示例,涵盖核心功能和实现方法。用户注册与登录功能@RestController@RequestMapping("/api/auth")publicclassAuthController{@AutowiredprivateUserServiceuserService;@PostMapping("/re
- 知识表示与推理:AI智能的核心技术
AIGC应用创新大全
人工智能easyui前端ai
知识表示与推理:AI智能的核心技术1.引入与连接:AI如何"思考"世界?想象一下,当你询问智能助手:"我明天需要带伞吗?"它如何得出答案?它需要理解"带伞"与"天气"的关系,需要获取天气预报信息,需要推断明天的天气状况,最终综合这些"知识"给出建议。这一看似简单的过程,背后正是AI的核心能力:知识表示(如何"记住"信息)和推理(如何"思考"问题)。从Siri到AlphaGo,从推荐系统到自动驾驶,
- 极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐
极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐标题极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐TagAI,知识蒸馏,实时推荐,模型压缩,技术挑战,高性能描述面对实时推荐系统必须在50ms内完成推荐这一极限条件,AI研发工程师团队在数据量从GB级飙升至PB级的巨大冲击下,展现出极高的技术实力和创新能力。团队通过引入先进的模型压缩和优化技术,成功在性能和精度之间找到了
- 图机器学习(13)——图相似性检测
图机器学习(13)——图相似性检测0.前言1.基于图嵌入的方法2.基于图核的方法3.基于GNN的方法4.应用0.前言图机器学习(machinelearning,ML)方法能广泛应用于各类任务,其应用场景涵盖从药物设计到社交网络推荐系统等多个领域。值得注意的是,由于这类方法在设计上具有通用性,同一算法可用于解决不同问题。学习图之间相似性的定量度量是一个关键问题。事实上,这是网络分析的重要步骤,同时也
- 推荐算法召回:架构理解
Jay Kay
c++推荐算法推荐算法架构算法
一、召回服务的定位与挑战召回层是推荐系统的第一道漏斗,负责从亿级候选集中筛选出千级别的相关项,其效果直接决定推荐效果的天花板。核心挑战包括:低延迟约束:需在50ms内完成海量候选检索;高召回率要求:98%的召回率需覆盖用户多样化兴趣;数据漂移应对:实时用户行为分布变化需动态适应;误杀控制:避免优质内容被过度过滤引发用户投诉。⚙️二、召回服务核心架构1.多路召回并行召回策略实现方式适用场景规则召回基
- 推荐系统中的归因分析
liliangcsdn
人工智能大数据
推荐系统中,归因分析(AttributionAnalysis)分析用户完成转化前到底是哪个渠道最起决定性作用。参考网络相关资料,常用的用户转化归因分析模型有如下6种,现收录参阅。1)最后点击归因转化全部归因于用户转化前最后一次点击的渠道。用户8月1日小红书种草,8月5日搜索官网,8月10日淘宝广告点击并完成下单。“最后点击归因”将此次转化归于淘宝广告,适用电商促销季投放归因。2)首次点击归因转化价
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio