https://github.com/hitgub123/rl
ratio = pi_prob / (oldpi_prob + 1e-5),表示真实选择的行为的在两个概率分布下概率的比值。更新模型参数时,保证该比值在一定范围内。
import tensorflow as tf
from tensorflow import keras
from keras.layers import *
import numpy as np
import gym
np.random.seed(1)
tf.random.set_seed(1)
EP_MAX = 1000
EP_LEN = 500
GAMMA = 0.9 # reward discount factor
A_LR = 0.0001 # learning rate for actor
C_LR = 0.0001 # learning rate for critic
UPDATE_STEP = 15 # loop update operation n-steps
EPSILON = 0.2 # for clipping surrogate objective
GAME = 'CartPole-v0'
env = gym.make(GAME).unwrapped
env.seed(1)
S_DIM = env.observation_space.shape[0]
A_DIM = env.action_space.n
print(S_DIM, A_DIM)
class PPO(object):
def __init__(self):
self.opt_a = tf.compat.v1.train.AdamOptimizer(A_LR)
self.opt_c = tf.compat.v1.train.AdamOptimizer(C_LR)
self.model_a = self._build_anet(trainable=True)
self.model_a_old = self._build_anet(trainable=False)
self.model_c = self._build_cnet()
def _build_anet(self, trainable=True):
tfs_a = Input([S_DIM], )
l1 = Dense(200, 'relu', trainable=trainable)(tfs_a)
a_prob = Dense(A_DIM, 'softmax', trainable=trainable)(l1)
model_a = keras.models.Model(inputs=tfs_a, outputs=a_prob)
return model_a
def _build_cnet(self):
tfs_c = Input([S_DIM], )
l1 = Dense(200, 'relu')(tfs_c)
v = Dense(1)(l1)
model_c = keras.models.Model(inputs=tfs_c, outputs=v)
model_c.compile(optimizer=self.opt_c, loss='mse')
return model_c
def update(self, s, a, r):
self.model_a_old.set_weights(self.model_a.get_weights())
v = self.get_v(s)
adv = r - v
oldpi = self.model_a_old(s)
for i in range(UPDATE_STEP):
with tf.GradientTape() as tape:
pi = self.model_a(s)
# xx=tf.shape(a)[0]
# xxx=tf.range(xx, dtype=tf.int32)
a_indices = tf.stack([tf.range(tf.shape(a)[0], dtype=tf.int32), a], axis=1)
pi_prob = tf.gather_nd(params=pi, indices=a_indices)
oldpi_prob = tf.gather_nd(params=oldpi, indices=a_indices)
ratio = pi_prob / (oldpi_prob + 1e-5)
surr = ratio * adv
x2 = tf.clip_by_value(ratio, 1. - EPSILON, 1. + EPSILON) * adv
x3 = tf.minimum(surr, x2)
aloss = -tf.reduce_mean(x3)
a_grads = tape.gradient(aloss, self.model_a.trainable_weights)
a_grads_and_vars = zip(a_grads, self.model_a.trainable_weights)
self.opt_a.apply_gradients(a_grads_and_vars)
self.model_c.fit(s, r, verbose=0, shuffle=False,epochs=UPDATE_STEP)
def choose_action(self, s):
s = s[np.newaxis, :]
prob_weights = self.model_a(s)[0].numpy()
action = np.random.choice(len(prob_weights), p=prob_weights)
return action
def get_v(self, s):
s = s.reshape(-1, S_DIM)
v = self.model_c(s)
return v
if __name__ == '__main__':
ppo = PPO()
GLOBAL_EP = 0
GLOBAL_RUNNING_R = []
render = False
for _ in range(EP_MAX):
s = env.reset()
ep_r = 0
buffer_s, buffer_a, buffer_r = [], [], [] # clear history buffer, use new policy to collect data
for t in range(EP_LEN):
if render: env.render()
a = ppo.choose_action(s)
s_, r, done, _ = env.step(a)
if done: r = -10
buffer_s.append(s)
buffer_a.append(a)
buffer_r.append(r - 1) # 0 for not down, -11 for down. Reward engineering
s = s_
ep_r += r
if t == EP_LEN - 1 or done:
if done:
v_s_ = 0 # end of episode
else:
v_s_ = ppo.get_v(s_)[0, 0]
discounted_r = [] # compute discounted reward
for r in buffer_r[::-1]:
v_s_ = r + GAMMA * v_s_
discounted_r.append(v_s_)
discounted_r.reverse()
bs, ba, br = np.vstack(buffer_s), np.vstack(buffer_a).ravel(), np.array(discounted_r)[:, None]
ppo.update(bs, ba, br)
break
if len(GLOBAL_RUNNING_R) == 0:
GLOBAL_RUNNING_R.append(ep_r)
else:
GLOBAL_RUNNING_R.append(GLOBAL_RUNNING_R[-1] * 0.9 + ep_r * 0.1)
GLOBAL_EP += 1
print(GLOBAL_EP, '|Ep_r: %.2f' % ep_r)
if ep_r > 180: render = True