- 基于SIFT-POCS的超分辨率图像重建技术研究与实现
神经网络15044
算法深度学习仿真模型人工智能计算机视觉深度学习算法大数据机器学习
基于SIFT-POCS的超分辨率图像重建技术研究与实现摘要本文详细研究了基于SIFT特征匹配和POCS(ProjectionOntoConvexSets)算法的超分辨率图像重建方法,并完整实现了文献"Super-ResolutionImageReconstructionBasedonSIFT-POCS"中提出的算法。首先介绍了超分辨率重建的基本原理和研究意义,然后深入分析了SIFT特征提取与匹配、
- MATLAB 实现 SRCNN 图像超分辨率重建
leo__520
matlab超分辨率重建开发语言
SRCNN代码实现。该代码使用三层卷积神经网络,进行图像的超分辨率重建,效果比双三次插值好很多SRCNN/Readme.txt,1494SRCNN/SRCNN.m,1267SRCNN/Set14/baboon.bmp,720054SRCNN/Set14/barbara.bmp,1244214SRCNN/Set14/bridge.bmp,263222SRCNN/Set14/coastguard.bm
- 【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等
十小大
超分辨率重建(理论+实战科研+应用)超分辨率重建人工智能图像处理深度学习计算机视觉图像超分pytorch
文章目录专栏简介专栏亮点适配人群相关说明关于答疑环境配置超分理解实现流程文章目录基础知识三个常用的SR框架数据集相关可解释性(论文中的可视化说明)图像超分(ImageSuper-Resolution)经典超分(ClassicalSR)任意尺度超分(Arbitrary-ScaleSR)高效/轻量化超分(Efficient/LightweightSR,ESR)盲超分/真实世界图像超分辨率(Blind/
- 【图像超分】论文复现:密集残差链接Transformer!DRCT的Pytorch源码复现,跑通超分源码,获得指标、模型复杂度、结果可视化,核心模块拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)pytorch深度学习超分辨率重建图像处理计算机视觉pythontransformer
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DRCT源码,获得与论文一致的PSNR/SSIM、Params、超分可视化结果,修正论文中FLOPs的计
- 【图像超分】论文精读:MTKD: Multi-Teacher Knowledge Distillation for Image Super-Resolution
十小大
超分辨率重建(理论+实战科研+应用)深度学习人工智能图像处理计算机视觉超分辨率重建论文阅读论文笔记
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)前言论文题目:MTKD:Multi-TeacherKnowledgeDistillationforImageSuper-Resolution——MTKD:图像超分辨率的多教师知识蒸馏论文
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- 人工智能混合编程实践:Python ONNX FP16加速进行图像超分重建
FriendshipT
人工智能混合编程实践人工智能python开发语言超分辨率重建FP16onnx
人工智能混合编程实践:PythonONNXFP16加速进行图像超分重建前言相关介绍Python简介ONNX简介图像超分辨率重建简介应用场景前提条件实验环境项目结构使用PythonONNXFP16加速进行图像超分重建sr_py_infer_fp16.py参考文献前言由于本人水平有限,难免出现错漏,敬请批评改正。更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、
- 19 - SAFM模块
Leo Chaw
深度学习算法实现深度学习计算机视觉机器学习
论文《Spatially-AdaptiveFeatureModulationforEfficientImageSuper-Resolution》1、作用这篇论文通过提出空间自适应特征调制(Spatially-AdaptiveFeatureModulation,SAFM)机制,旨在解决图像超分辨率(Super-Resolution,SR)的高效设计问题。在图像超分辨率重建性能上取得了显著的成果,这些
- 鸿蒙开发实战之Image Kit重构美颜相机图像处理管线
harmonyos-next
一、核心能力突破通过ImageKit实现三大技术革新:硬件加速处理4K图像处理延迟降至16ms(NPU+GPU协同)支持10bitHDR管线(BT.2020色域)AI增强算法实时皮肤质感分析(98%毛孔保留率)智能背景重构(语义分割精度±1像素)跨平台一致性相同算法在麒麟/骁龙平台输出差异{updatePreview(result);});//超分辨率重建image.superResolution
- 【图像超分】论文复现:轻量化超分 | 频域感知Transfomer模型FreqFormer的Pytorch源码复现,跑通源码,获得指标、模型复杂度、超分结果图,架构拆解与源码对应,注释详细!
十小大
超分辨率重建(理论+实战科研+应用)深度学习计算机视觉图像处理超分辨率重建人工智能pythonpytorch
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通FreqFormer源码,获得与论文一致的PSNR/SSIM、Params、FLOPs、超分可视化结果;
- 【图像超分】论文复现:轻量化超分 | FMEN的Pytorch源码复现,跑通源码,整合到EDSR-PyTorch中进行训练、重参数化、测试
十小大
超分辨率重建(理论+实战科研+应用)pytorch人工智能python超分辨率重建图像处理深度学习计算机视觉
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通FMEN源码(只给了模型实现和权重),将FMEN整合到EDSR-PyTorch中进行训练和重参数化测试获
- 深度学习中的卷积和反卷积
思绪漂移
深度学习人工智能
深度学习中的卷积和反卷积一、引言:为什么需要卷积和反卷积?在计算机视觉领域,卷积神经网络(CNN)通过卷积操作实现了平移不变性特征提取,而反卷积(TransposedConvolution)则作为图像重构的核心技术,广泛应用于图像分割、超分辨率重建、生成对抗网络(GAN)等场景。二者的核心差异在于:卷积:高维→低维(如224x224图像→7x7特征图)通过局部连接和权值共享显著减少参数量,实现高效
- python语言中如何构建图像超分辨率重建系统,并支持SRResNet和SRGAN算法,且使用PyQt5进行界面设计。
OICQQ67658008
python超分辨率重建算法
python语言中如何构建图像超分辨率重建系统,并支持SRResNet和SRGAN算法,且使用PyQt5进行界面设计。文章目录1.安装依赖库2.创建主窗口`main_window.py`3.实现SRResNet逻辑`srresnet.py`4.实现SRGAN逻辑`srgan.py`1.安装依赖库2.创建登录界面`login_window.py`3.创建主窗口`main_window.py`4.运行
- 【图像超分】论文复现:无处不在的双分支通道-空间特征聚合思想!DAT的Pytorch源码复现,获得与论文一致的PSNR/SSIM、Params、FLOPs、超分可视化结果,架构拆解与代码实现!
十小大
超分辨率重建(理论+实战科研+应用)pytorch人工智能计算机视觉深度学习图像处理python超分辨率重建
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通DAT源码(DAT,DAT-2,DAT-S,DAT-light),获得与论文一致的PSNR/SSIM、P
- 【图像超分】论文复现:多级窗口增大感受野,线性空间映射降低复杂度!高效超分模型HiT-SR的Pytorch源码复现,获得与论文一致的指标和超分可视化结果,核心结构SCC详解!
十小大
超分辨率重建(理论+实战科研+应用)pytorch人工智能python超分辨率重建图像处理计算机视觉深度学习
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通HiT-SR源码(HiT-SIR,HiT-SNG,HiT-SRF),获得与论文一致的指标和超分可视化结果
- 关于反卷积(转置卷积)小记
文弱_书生
乱七八糟人工智能深度学习反卷积
反卷积(TransposedConvolution)详解1.反卷积概述反卷积(TransposedConvolution),又称转置卷积、反向卷积,在深度学习中主要用于上采样(upsampling),常见于**生成对抗网络(GANs)、语义分割(SemanticSegmentation)、超分辨率重建(Super-Resolution)**等任务。误解:反卷积不是普通卷积的数学逆操作,而是一种特定
- Pytorch实现之对称卷积神经网络结构实现超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorchcnn人工智能生成对抗网络神经网络深度学习
简介简介:针对传统的超分辨率重建技术所重建的图像过于光滑且缺乏细节的问题,作者提出了一种改进的生成对抗图像超分辨率网络。该改进方法基于深度神经网络,其生成模型包含多层卷积模块和多层反卷积模块,其中在感知损失基础上增加了跳层连接和损失函数。该判别模型由多层神经网络组成,其损失函数基于生成式对抗网络生成的判别模型损失函数。论文题目:ImageSuper-resolutionReconstruction
- 使用Diffusion Models进行图像超分辩重建
沉迷单车的追风少年
DiffusionModels与深度学习人工智能计算机视觉超分辨率重建AIGC深度学习
DiffusionModels专栏文章汇总:入门与实战前言:图像超分辨率重建是一个经典CV任务,其实LR(低分辨率)和HR(高分辨率)图像仅在高频细节上存在差异。通过添加适当的噪声,LR图像将变得与其HR对应图像无法区分。这篇博客介绍一种方式巧妙利用这个规律使用DiffusionModels进行图像超分辩重建任务。目录贡献概述动机方法详解模型训练论文贡献概述这项研究提出了一种基于扩散逆过程的新图像
- 【图像超分】论文复现:万字长文!Pytorch实现EDSR!代码修改无报错!踩坑全记录!适合各种深度学习新手!帮助你少走弯路!附修改后的代码和PSNR最优的模型权重文件!
十小大
超分辨率重建(理论+实战科研+应用)深度学习pytorch人工智能超分辨率重建图像处理计算机视觉图像超分
第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)修改后代码和权重文件下载见文末链接!!!包含制作好的h5数据集和最优性能权重文件,可直接用于测试。本文亮点:讲解细致,EDSR流程全通,代码注释丰富,适合新手入门阅读深度思考,踩坑报错全
- 【图像复原】论文精读:Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration
十小大
超分辨率重建(理论+实战科研+应用)深度学习人工智能计算机视觉图像修复图像处理论文阅读论文笔记
第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)文章目录前言Abstract1.Introduction2.RelatedWork3.Method3.1.ModelScalingUp3.2.ScalingUpTrainingData3
- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- [超分辨率重建]ESRGAN算法训练自己的数据集过程
Cr_南猫
超分辨率重建超分辨率重建人工智能深度学习
一、下载数据集及项目包1.数据集1.1文件夹框架的介绍,如下图所示:主要有train和val,分别有高清(HR)和低清(LR)的图像。1.2原图先通过分割尺寸的脚本先将数据集图片处理成两个相同的图像组(HR和LR)。如训练x4的ESRGAN模型,那么我们需要将HR的图像尺寸与LR的图像尺寸比例是4:1。在我的训练中,我将HR的图像尺寸分割成了480x480,LR的图像分割成了120x120。如下图
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于QuickRNet的TPU超分模型部署
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《赛题名称》基于QuickRNet的TPU超分模型部署巴黎欧莱雅林松智能应用业务部算法工程师中信科移动中国-北京
[email protected]团队简介巴黎欧莱雅团队包含一个队长和零个队员。队长林松,研究生学历,2019-2022在中国矿业大学(北京)攻读硕士学位,于2022年7月加入中信科移动公司,现在在智能应用业务部负责视觉AI算法的落地部署,是一名算法工程师,主要擅长
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于Real-ESRGAN的TPU超分模型部署
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《基于TPU平台实现超分辨率重建模型部署》洋洋很棒李鹏飞算法工程师中国-烟台
[email protected]团队简介本人从事工业、互联网场景传统图像算法及深度学习算法开发、部署工作。其中端侧算法开发及部署工作5年时间。摘要本文是《基于TPU平台实现超分辨率重建模型部署》方案中算法方案的说明。本作品算法模型选用的是Real-ESRGAN。Real-ESRGAN是基
- 使用开源 Upscayl 工具放大图片
winfredzhang
人工智能Upscayl放大开源
Upscayl是一个基于人工智能的图像放大工具,可以用来将低分辨率的图片放大到高分辨率。Upscayl使用了一种称为超分辨率重建的技术,可以生成逼真的高分辨率图像。在本教程中,我们将介绍如何使用Upscaly工具放大图片。准备工作下载:https://github.com/upscayl/upscayl/releases/download/v2.9.5/upscayl-2.9.5-win.exe安
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《基于TPU平台实现超分辨率重建模型部署》作品名:基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案队伍名:Absofastlutely蒋松儒计算机科学与技术系硕士南京大学中国-江苏
[email protected]吕欢欢计算机科学与技术系博士南京大学中国-江苏
[email protected]张凯铭物理学系本科四川大学中国-四川283574
- TPU编程竞赛|算丰助力2023 CCF大数据与计算智能大赛!
算能开发者社区
人工智能算法
目录赛题介绍赛题背景赛题任务赛程安排初赛阶段2023/09/25-11/27决赛阶段2023/11/28-12/17评分机制奖项设置赛题奖项赛事奖项近日,第十一届2023CCF大数据与计算智能大赛(简称CCFBDCI)正式启动报名,本次大赛含竞技赛题、数字安全公开赛等十余道竞技及训练赛题。算丰不仅为本次大赛提供了赛题「基于TPU平台实现视频超分辨率重建模型部署」,也为参赛选手提供丰富的云端TPU资
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于FSRCNN的TPU平台超分辨率模型部署方案
算能开发者社区
大数据超分辨率重建人工智能
- 模型实战(18)之C++ - tensorRT部署GAN模型实现人脸超分辨重建
明月醉窗台
#深度学习实战例程c++生成对抗网络人工智能神经网络visualstudio
模型实战(18)之C++-tensorRT部署GAN模型实现人脸超分辨重建一个实现人脸超分辨率重建的demo支持StyleGAN:GPENorGFPGAN通过C++-tensorrt快速部署,推理速度每帧在RTX3090上5.5ms+,RTX3050上10ms+下边是实现效果(图片来源于网络search,如若侵权,联系删除)下边给出实现步骤:1.模型转换下载模型至本地Downloadthemode
- 【图像重构】基于OMP算法实现图像重构附matlab代码
matlab科研助手
图像处理机器学习算法人工智能
1内容介绍为了提高可见光图像的识别和检测能力,提出基于OMP算法的可见光图像超分辨率重构方法.建立可见光图像的视觉信息采集模型,采用空间锚点邻域特征匹配方法进行的可见光图像超分辨特征分解,提取可见光图像边缘轮廓特征量,结合残差特征估计高分辨率图像特征融合和优化分割,建立可见光图像的超分辨率重建特征分布集,采用边缘信息空间区域融合方法进行可见光图像的像素信息融合和优化特征重组,提取可见光图像的模糊度
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后