- 吴恩达 机器学习cs229-学习笔记-更新中
是娜个二叉树!
机器学习学习笔记
吴恩达机器学习cs22901基础概念语言:Matlab/python监督学习定义:获取一组数据集拟合数据从X到Y的映射回归问题:预测的Y是连续的,Y是实数分类问题:分类指的是Y取离散值,输出是离散的两组,正示例和负示例,把所有样本推到这条直线上,用0,1,标识逻辑回归算法,拟合直线区分正,负示例处理相对大量特征的回归算法或者分类算法支持向量机算法:它使用的不是1,2,3,10个输入特征,而是使用无
- 和李沐老师学深度学习--2.数据操作部分代码实现(学习笔记)
大家对代码有不懂地方都可以上网去查找,最好是有一定的数据分析基础比较容易理解,李沐老师课程视频链接我放在这里了大家有不懂都可以观看课程进行学习04数据操作+数据预处理【动手学深度学习v2】_哔哩哔哩_bilibili深度学习课程电子书:大家可以使用翻译插件观看书的内容Preface—DiveintoDeepLearning1.0.3documentation深度学习github项目:https:/
- 嵌入式学习-暑假学习总规划-day6
此文章为本人暑期学习计划,目标是在暑假学习吴恩达的机器学习,pytorch的使用,yolov8的使用,STM32的开发。在八月底九月初的总目标是在单片机上部署一个关于计算机视觉的轻量化AI。时间段学习任务目标成果6月17日-6月30日吴恩达监督学习课程含线性回归、逻辑回归、神经网络基础完成课程视频+习题,理解训练流程、损失函数、过拟合、正则化7月1日-7月10日PyTorch框架入门学习张量、自动
- 2025年大模型学习新攻略!掌握未来AI的关键技能
AI大模型-大飞
人工智能产品经理程序员AgentAI大模型大模型教程
1.公开课(视频):李宏毅机器学习斯坦福CS336:从零开始构建语言模型卡内基梅隆大学【多模态机器学习】RAGFromScratchHuggingFaceNLP课程2.机器学习和编程基础:pytorch官方中文教程[中英字幕]吴恩达机器学习李宏毅机器学习3.Attention机制:论文:《AttentionIsAllYouNeed》Transformer论文逐段精读【论文精读】-跟李沐学AIzhi
- 吴恩达机器学习笔记(1)—引言
大饼酥
人工智能机器学习人工智能吴恩达
目录一、欢迎二、机器学习是什么三、监督学习四、无监督学习一、欢迎机器学习是当前信息技术领域中最令人兴奋的方向之一。在这门课程中,你不仅会学习机器学习的前沿知识,还将亲手实现相关算法,从而深入理解其内部机理。事实上,机器学习已广泛渗透进我们的日常生活。例如,每次你使用Google、Bing进行搜索,或用Facebook、Apple的图像识别功能识别朋友,甚至邮箱中的垃圾邮件过滤器,背后都离不开机器学
- 全方位入门大模型应用开发,只需一招搞定:吴恩达系列课程中文教程实战指南!
AI小白熊
人工智能机器学习自然语言处理ai大模型程序员转行
随着生成式人工智能技术的迅速发展,大语言模型(LLM,LargeLanguageModel)成为了当下AI领域最炙手可热的赛道之一。如何快速、高效地掌握LLM的开发要领,成为众多开发者关注的热点。而由Datawhale团队打造的《面向开发者的大模型手册-LLMCookbook》项目,正好为有志于投身大模型开发的中文学习者提供了一套体系化、本地化的入门与实战宝典。本文将为你详细解析这个项目包含的各类
- 吴恩达机器学习入门笔记(Week 1)
冒冒喵
吴恩达机器学习入门机器学习笔记人工智能
吴恩达机器学习Week1学习资源及工具机器学习分类专业术语(Terminology)线性回归模型(Linearregression)代价函数(costfunction)学习资源及工具1、课程资源:B站大学2、相关工具:Jupter&Github3、书籍资源:神经网络与深度学习(MichaelNielsen)、机器学习(周志华)、统计学习方法(李航)…机器学习分类1、监督学习(supervisedl
- 斯坦福CS229机器学习笔记-Lecture2-线性回归+梯度下降+正规方程组
Teeyohuang
机器学习CS229-吴恩达机器学习笔记CS229吴恩达机器学习
声明:此系列博文根据斯坦福CS229课程,吴恩达主讲所写,为本人自学笔记,写成博客分享出来博文中部分图片和公式都来源于CS229官方notes。CS229的视频和讲义均为互联网公开资源Lecture2这一节主要讲的是三个部分的内容:·LinearRegression(线性回归)·GradientDescent(梯度下降)·NormalEquations(正规方程组)1、线性回归首先给了一个例子,如
- 04 Deep learning神经网络编程基础 梯度下降 --吴恩达
狂小虎
系统学习pythonDeepLearning深度学习神经网络人工智能
梯度下降在深度学习的应用梯度下降是优化神经网络参数的核心算法,通过迭代调整参数最小化损失函数。核心公式参数更新规则:θt+1=θt−η∇J(θ
- 02 Deep learning神经网络的编程基础 逻辑回归--吴恩达
狂小虎
DeepLearning深度学习神经网络逻辑回归
逻辑回归逻辑回归是一种用于解决二分类任务(如预测是否是猫咪等)的统计学习方法。尽管名称中包含“回归”,但其本质是通过线性回归的变体输出概率值,并使用Sigmoid函数将线性结果映射到[0,1]区间。以猫咪预测为例假设单个样本/单张图片为(x\mathbf{x}x,y\mathbf{y}y),特征向量X=x\mathbf{x}x,则y^\hat{y}y^即为X的预测值,y^\hat{y}y^=P(y
- 吴恩达MCP课程(5):research_server_prompt_resource.py
ZHOU_CAMP
MCPmcpagent
代码importarxivimportjsonimportosfromtypingimportListfrommcp.server.fastmcpimportFastMCPPAPER_DIR="papers"#InitializeFastMCPservermcp=FastMCP("research")@mcp.tool()defsearch_papers(topic:str,max_results
- 吴恩达深度学习课程实践项目集
Kiki-2189
本文还有配套的精品资源,点击获取简介:吴恩达深度学习编程作业包含了Coursera平台课程中的实践环节,为学员提供深度学习理论与编程技能的巩固。这些作业从基础神经网络到复杂架构,涵盖深度学习的各种关键概念和技术,使用TensorFlow进行模型构建和训练,适合作为入门深度学习的资源。1.深度学习基础与理论框架在当今的人工智能领域,深度学习以其强大的模式识别能力,已经成为了众多技术革新的核心。本章将
- 自然语言处理 (NLP) 学习路线
我喝AD钙
我的学习笔记自然语言处理学习人工智能
自然语言处理学习路线1.基础准备(可参考mooc学习)2.学习基础NLP技术(可参考mooc学习)3.经典机器学习算法在NLP中的应用(可参考吴恩达机器学习课程)4.深度学习基础(基础参考吴恩达、工具看TF、Keras官网手册)5.深度学习在NLP中的应用(arxiv论文原文和解析博客,实战参考gitee/github)6.现代NLP模型(arxiv论文原文和解析博客,实战参考gitee/gith
- 吴恩达机器学习笔记:特征与多项式回归
ちゆきー
机器学习笔记回归
1.特征和多项式回归如房价预测问题,ℎθ(x)=θ0+θ1×frontage+θ2×deptℎx1=frontage(临街宽度),x2=deptℎ(纵向深度),x=frontage∗deptℎ=area(面积),则:hθ(x)=θ0+θ1xh_\theta(x)=\theta_0+\theta_1xhθ(x)=θ0+θ1x线性回归并不适用于所有数据,有时我们需要曲线来适应我们的数据,比如一个二次方
- 吴恩达机器学习笔记:多维梯度下降实践
ちゆきー
机器学习笔记计算机视觉
1.特征放缩在我们面对多维特征问题的时候,我们要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。以房价问题为例,假设我们使用两个特征,房屋的尺寸和房间的数量,尺寸的值为0-2000平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等高线图能看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。解决的方法是尝试将所有特征的尺度都尽量缩放到-1到1之间。如
- 吴恩达机器学习笔记:监督学习
ちゆきー
机器学习笔记学习
1.回归我们用一个例子介绍什么是监督学习把正式的定义放在后面介绍。假如说你想预测房价。前阵子,一个学生从波特兰俄勒冈州的研究所收集了一些房价的数据。你把这些数据画出来,看起来是这个样子:横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千美元。那基于这组数据,假如你有一个朋友,他有一套750平方英尺房子,现在他希望把房子卖掉,他想知道这房子能卖多少钱。我们应用学习算法,可以在这组数据中画一条
- 吴恩达深度学习作业之 PyTorch 实现多分类任务
海盗儿
深度学习pytorch分类
在这次作业中会学到:(参考https://zhuanlan.zhihu.com/p/536483424)PyTorch与NumPy的相互转换PyTorch的常见运算(矩阵乘法、激活函数、误差)PyTorch的初始化器PyTorch的优化器PyTorch维护梯度的方法数据集本项目中,我们要用到一个平面点数据集。在平面上,有三种颜色不同的点。我们希望用PyTorch编写的神经网络能够区分这三种点。im
- 宝藏资源库!10个免费网站助你成为AI达人
算家计算
AI干货分享人工智能AI学习AI相关网站分享小白必看算家云租算力到算家云
人工智能已成为当今最炙手可热的领域之一,但面对海量学习资源,许多初学者常感无从下手。本文将精选10个免费AI学习平台,涵盖理论课程、实战项目、社区资源与工具库,并标注难度、优缺点及适用人群,助你高效入门AI!一、核心学习平台1.Coursera官网链接:Coursera难度:⭐️⭐️(初级到进阶)推荐课程:吴恩达《深度学习专项课程》(包含5门子课程,覆盖神经网络、卷积网络、序列模型等)。优点:课程
- 大佬带你学习大模型Prompt技巧全解析,看完这篇文章就够了!
和老莫一起学AI
学习prompt语言模型人工智能ai程序员转行
在数字化浪潮的推动下,AI大模型以其卓越的自然语言处理能力和智能交互特性,迅速在很多领域中占据了重要地位。比如:与传统客服相比,AI大模型展现出了无可比拟的优势,通过精心设计的prompt,能使我们在客服托管、智能客服等多个项目和业务场景中发挥显著作用,大幅提高工作效率,优化成果质量。为了精进个人能力以及助力产研学习氛围的提升,本人在学习完吴恩达教授以及其他前辈们有关prompt的课程之后,整理了
- 吴恩达深度学习复盘(19)XGBoost简介|神经网络与决策树
wgc2k
#深度学习深度学习神经网络决策树
XGBoost多年来,机器学习研究人员提出了许多构建决策树的方法,目前最常用的方法是对样本或决策树的实现收费。其中,XGBoost是一种非常快速且易于使用的开源实现,已成功用于赢得许多机器学习竞赛和商业应用。算法原理基本思想:在构建决策树时,不是每次都以等概率选择训练样本,而是对那些之前已训练的树集合仍判断错误的样本给予更高的选择概率。这类似于在训练和教育中的“刻意练习”,例如学钢琴时专注于弹奏不
- 诺奖得主杰弗里·辛顿爆料:“AI教父”名号是吴恩达带头喊出来的、AI会比人类更聪明...
CSDN资讯
人工智能
责编|梦依丹出品丨AI科技大本营(ID:rgznai100)继去年荣获诺贝尔物理学奖引发全球关注后,“AI教父”杰弗里·辛顿(GeoffreyHinton),这位深度学习领域的奠基人近日在接受最新采访中坦言:“几乎所有顶尖研究人员都认为AI将变得比人类更聪明。”他之前在诺贝尔奖的官方采访中表示:AI最快5年超越人类智慧。具体见诺奖采访深度学习教父辛顿:最快五年内AI有50%概率超越人类,任何说“一
- 【学习笔记】机器学习(Machine Learning) | 第三章(1)| 多特征与向量化计算
北温凉
机器学习笔记
机器学习(MachineLearning)简要声明基于吴恩达教授(AndrewNg)课程视频BiliBili课程资源文章目录机器学习(MachineLearning)简要声明一、多特征(MultipleFeatures)概述1.1特征表示方法1.2线性回归模型扩展扩展说明一、多特征(MultipleFeatures)概述1.1特征表示方法在机器学习中,当数据包含多个特征时,我们需要使用特征向量来表
- 吴恩达深度学习(17)独热编码|回归树简介
wgc2k
#深度学习深度学习回归人工智能
独热编码(One-HotEncoding)简介在之前看到的示例中,每个特征只能取一个或两个可能的值,比如耳朵形状只有尖或,胡须只有有或无。但如果特征可以有两个以上的取值该需要特殊处理。以宠物收养中心应用程序的新训练集为例,除了耳朵形状特征外,其他数据都相同。此时耳朵形状不再只有尖和松软两种,还可以是椭圆形,即耳朵形状(ESHI)特征仍是分类值特征,但从有两个可能值变为有三个可能值。当基于这个特征进
- 拆解吴恩达开源的翻译AI Agent
weixin_47233946
开源人工智能
斯坦福大学教授吴恩达一直非常推崇AIAgent,之前他提出过AIAgent的四种工作模式,分别是Reflection(反思)、Tooluse(工具使用)、Planning(规划)和Multi-agentcollaboration(多智能体协同)。近日,他又开源了一个翻译AIAgent,他认为AI智能体机器翻译对改进传统神经机器翻译”具有巨大潜力,尚未被完全发掘“,在周末的时间,写了一个演示项目。开
- 一文详细梳理!大模型从理论到实战落地必备干货!零基础入门到精通,收藏这一篇就够了
网络安全大白
科技网络安全程序员安全网络安全系统安全
在人工智能的浩瀚星辰中,大模型犹如璀璨的北极星,引领着技术的前沿方向。它们不仅代表了深度学习领域的最新突破,更成为了推动各行各业智能化转型的关键力量。本文笔者总结了大模型从理论研究到实战落地所需具备的所有知识干货,与大家分享~基础知识数学深入浅出动态可视化数学之美(几何、微积分、概率论、线性代数等):https://space.bilibili.com/88461692/机器学习吴恩达机器学习入门
- 深度学习教程 | 经典CNN网络实例详解
Dashesand
深度学习cnn网络
深度学习教程|经典CNN网络实例详解作者:韩信子@ShowMeAI教程地址:www.showmeai.tech/tutorials/3…本文地址:www.showmeai.tech/article-det…声明:版权所有,转载请联系平台与作者并注明出处收藏ShowMeAI查看更多精彩内容本系列为吴恩达老师《深度学习专项课程(DeepLearningSpecialization)》学习与总结整理所得
- 【深度学习基础】第四十七课:BLEU得分
x-jeff
深度学习基础深度学习人工智能nlp
【深度学习基础】系列博客为学习Coursera上吴恩达深度学习课程所做的课程笔记。1.BLEU得分机器翻译的一大难题是一个法语句子可以有多种英文翻译,并且翻译质量都同样好。那么我们该怎样评估一个机器翻译系统呢?常用的一个方法就是使用BLEU得分。BLEU原文:PapineniK,RoukosS,WardT,etal.Bleu:amethodforautomaticevaluationofmachi
- 吴恩达深度学习复盘(1)神经网络与深度学习的发展
wgc2k
#深度学习深度学习人工智能
一、神经网络的起源与生物学动机灵感来源神经网络的最初动机源于对生物大脑的模仿。20世纪50年代,科学家试图通过软件模拟神经元的工作机制(如树突接收信号、轴突传递信号),构建类似人类大脑的信息处理系统。生物神经元的简化模型人工神经网络采用数学模型简化生物神经元的行为:每个神经元接收输入(数字信号),通过加权求和与激活函数处理后输出。尽管这一模型远不及真实大脑复杂,但早期研究认为其可能复现智能行为。二
- 人工智能(11)——————计算机视觉
長安一片月
人工智能人工智能计算机视觉
目录声明正文1、简介2、步骤1)图像分类2)目标检测(目标定位)3)目标跟踪4)图像分割普通分割语义分割实例分割5)图像生成3、总结声明以下内容均来自B站吴恩达教授的视频以及西瓜书和众多前辈的学习成果总结,仅记录本人的大模型学习过程,如有侵权立马删除。言论仅代表自身理解,如有错误还请指正。正文1、简介我们先来看看百度百科里对计算机视觉的介绍:计算机视觉是一门研究如何使机器“看”的科学,更进一步的说
- 人工智能(10)——————自然语言处理
長安一片月
人工智能人工智能自然语言处理学习transformer
声明以下内容均来自B站吴恩达教授的视频以及西瓜书和众多前辈的学习成果总结,仅记录本人的大模型学习过程,如有侵权立马删除。言论仅代表自身理解,如有错误还请指正。正文简介其实在现在的人工智能领域,很多东西都是相互关联,相互促进的。比如机器学习可以引入到自然语言处理,计算机视觉等多个类别当中,而自然语言处理中特有的seq2seq方法也可以用于机器学习当中。但是根本上这些类别都存在自己独有之处。自然语言处
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio