- Hive与Hudi集成:增量大数据处理方案
AI大数据智能洞察
大数据与AI人工智能大数据AI应用hivehadoop数据仓库ai
Hive与Hudi集成:增量大数据处理方案关键词:Hive、Hudi、增量大数据处理、数据集成、数据湖摘要:本文主要探讨了Hive与Hudi集成的增量大数据处理方案。我们将深入了解Hive和Hudi的核心概念,剖析它们之间的关系,详细阐述集成的算法原理与操作步骤,通过实际项目案例展示如何进行开发环境搭建、代码实现与解读。同时,会介绍该集成方案的实际应用场景、相关工具和资源,探讨未来发展趋势与挑战。
- 面向现代数据湖仓的开放表格式对比分析:Iceberg、Hudi、Delta Lake与Paimon
piekill
大数据平台大数据sparkflinkbigdata数据仓库
文章目录第一章数据湖的演进:从存储到事务型平台1.1前湖仓时代:ApacheHive的局限性1.2湖仓一体的范式转移第二章架构深度剖析2.1ApacheIceberg:以元数据为中心的设计2.2ApacheHudi:流式优先、时间轴驱动的架构2.3DeltaLake:以事务日志为唯一真相源2.4ApachePaimon:面向实时湖仓的LSM树架构第三章核心能力对比分析3.1事务性与并发控制3.2数
- 数据江湖的“三国演义”:数据仓库、数据湖与湖仓一体的全景对比
大模型大数据攻城狮
数据仓库数据湖湖仓一体IceberghudiSnowflake流式计算
目录1.数据仓库:秩序井然的“中央档案馆”核心特点:一切为了分析优势:稳定如山,分析无敌短板:灵活性欠佳实战案例:零售巨头的销售分析2.数据湖:自由奔放的“原始丛林”核心特点:包容一切优势:灵活到飞起短板:自由的代价实战案例:流媒体平台的用户行为分析3.湖仓一体:兼得鱼与熊掌的“新物种”核心特点:两全其美优势:全能选手短板:尚在成长实战案例:金融科技的实时风控4.技术选型的“天平”:如何选择适合你
- 基于大模型的短暂性脑缺血发作(TIA)全流程预测与干预系统技术方案
LCG元
大模型医疗研究-技术方向技术方案机器学习深度学习人工智能
目录一、系统架构总览二、核心模块详细设计三、系统集成方案四、系统部署拓扑图五、技术验证方案六、健康管理子系统七、安全与合规设计技术指标与性能保障八、HL7FHIR接口规范九、分层蒸馏方案十、多中心RCT研究设计十一、硬件选型成本优化方案跨模块集成工作流一、系统架构总览多源数据采集联邦学习数据湖大模型预测中枢术前预测系统术中决策系统术后管理系统手术方案生成麻醉动态调控并发症预警护理方案优化健康教育引
- 28、 拥抱数据湖架构
火箭统
数据湖数据仓库大数据架构
拥抱数据湖架构1.数据湖简介在当今数据驱动的世界中,数据湖架构已经成为处理和存储海量数据的有效解决方案。数据湖不仅能够保存来自各种不同来源的原始格式的数据,还为企业提供了灵活且强大的数据分析能力。本文将探讨数据湖架构的概念、优势以及如何在实际中应用数据湖架构来解决数据存储和处理的问题。数据湖的概念最早于2011年被提出。与传统数据仓库不同,数据湖允许企业在不预先定义数据结构的情况下存储大量数据。数
- 数据湖vs数据仓库:非结构化数据存储的终极对决
AI大数据智能洞察
大数据与AI人工智能数据仓库ai
数据湖vs数据仓库:非结构化数据存储的终极对决关键词:数据湖,数据仓库,非结构化数据,数据存储,Schema-on-Read,Schema-on-Write,数据治理摘要:本文深入对比数据湖与数据仓库在非结构化数据存储领域的核心差异,从技术架构、数据处理范式、应用场景等维度展开分析。通过数学模型、代码实战和典型案例,揭示两者在非结构化数据管理中的优势与局限,为企业数据架构选型提供决策参考。1.背景
- 数据湖与数据仓库在云平台的融合架构:Delta Lake实战指南
AI云原生与云计算技术学院
AI云原生与云计算数据仓库架构ai
数据湖与数据仓库在云平台的融合架构:DeltaLake实战指南关键词:数据湖,数据仓库,云平台,融合架构,DeltaLake,湖仓一体,数据治理摘要:本文深入探讨数据湖与数据仓库在云平台的融合架构,以DeltaLake为核心技术载体,解析湖仓融合的技术原理、实施路径及最佳实践。通过对比传统数据架构的痛点,阐述DeltaLake如何通过ACID事务、Schema管理、时间旅行等特性实现非结构化数据湖
- Apache Iceberg数据湖基础
Aurora_NeAr
apache
IntroducingApacheIceberg数据湖的演进与挑战传统数据湖(Hive表格式)的缺陷:分区锁定:查询必须显式指定分区字段(如WHEREdt='2025-07-01')。无原子性:并发写入导致数据覆盖或部分可见。低效元数据:LIST操作扫描全部分区目录(云存储成本高)。Iceberg的革新目标:解耦计算引擎与存储格式(支持Spark/Flink/Trino等);提供ACID事务、模式
- 掌握大数据领域数据湖的部署要点
掌握大数据领域数据湖的部署要点关键词:数据湖,大数据部署,数据治理,存储架构,元数据管理,数据质量,湖仓一体摘要:在数据爆炸的时代,企业面临着"数据多却用不好"的困境——结构化数据藏在数据库里,非结构化数据堆在服务器上,半结构化数据散落在日志文件中。数据湖就像一个"智能中央仓库",能统一存储所有类型的数据,并通过灵活的管理让数据"活起来"。本文将用"图书馆管理员建仓库"的故事,从概念理解、架构设计
- 数据编织趋势探秘
今天跟大家聊聊数据编织(DataFabric)的概念Gartner在2022年重要战略技术趋势中重点提到数据编织(DataFabric)这个概念,本质上是在谈怎么实现“数据找人而不是人找数据”的愿景为什么DataFabric将会成为一种趋势,为什么越来越多的企业将在未来采用这样的方式进行部署?1、在传统IT时代,无论是早年的“数据仓库”还是近几年的“数据湖”和“大数据”时代,其实数据利用都是集中式
- Apache Gravitino 安装和配置指南
牧沛琚Immortal
ApacheGravitino安装和配置指南gravitino世界上最强大的数据目录服务,提供高性能、地理分布和联邦化的元数据湖。项目地址:https://gitcode.com/gh_mirrors/gra/gravitino1.项目基础介绍和主要的编程语言项目基础介绍ApacheGravitino是一个高性能、地理分布式和联邦化的元数据湖。它直接管理不同来源、类型和区域的元数据,并为用户提供统
- 现代数据湖架构全景解析:存储、表格式、计算引擎与元数据服务的协同生态
讲文明的喜羊羊拒绝pua
大数据架构数据湖SparkIcebergAmoro对象存储
本文全面剖析现代数据湖架构的核心组件,深入探讨对象存储(OSS/S3)、表格式(Iceberg/Hudi/DeltaLake)、计算引擎(Spark/Flink/Presto)及元数据服务(HMS/Amoro)的协作关系,并提供企业级选型指南。一、数据湖架构演进与核心价值数据湖架构演进历程现代数据湖核心价值矩阵维度传统数仓现代数据湖存储成本高(专有硬件)低(对象存储)数据时效性小时/天级分钟/秒级
- 使用Airbyte连接Shopify进行数据集成实践
2301_80727036
语言模型elasticsearchjenkins
在当今的数据驱动时代,数据集成平台如Airbyte变得尤为重要。它不仅可以让从API、数据库和文件到仓库或数据湖的ELT流程变得高效,还提供了丰富的连接器,支持各种数据源的集成。尽管Airbyte的Shopify连接器已经不再推荐使用,但它的使用方法仍然能为我们揭示一些重要的实践技巧。技术背景介绍Airbyte是一个开源的数据集成平台,专注于从各种数据源将数据提取、加载到目标数据仓库或者数据湖中。
- 火山引擎发布大模型生态广场MCP Servers,LAS MCP助力AI数据湖构建
资料来源:火山引擎-开发者社区近日,火山引擎发布大模型生态广场——MCPServers,借助字节跳动生态能力,通过“MCPMarket(工具广场)+火山方舟(大模型服务)+Trae(应用开发环境)”深度协同,实现工具调用、模型推理到应用部署的全链路开发闭环,助力开发者以“模块化组装”模式告别复杂手动开发流程。火山引擎大模型生态广场MCPServers的核心架构由三部分组成:1.MCPMarket(
- 如何使用AWS S3进行文档对象加载
weixin_43212959
aws云计算
技术背景介绍AmazonSimpleStorageService(AmazonS3)是AmazonWebServices(AWS)提供的对象存储服务,具备高扩展性和高可用性,常用于备份、存档及数据湖构建。在AI应用中,S3也成为存储和访问大数据集的重要组件。在这篇文章中,我们将探讨如何使用S3FileLoader从S3存储桶中加载文档对象。核心原理解析Python的Boto3库是与AWS服务交互的
- 【软考高级系统架构论文】论数据湖技术及其应用
_Richard_
软考高级系统架构论文系统架构
论文真题近年来,随着移动互联网、物联网、工业互联网等技术的不断发展,企业级应用面临的数据规模不断增大,数据类型异常复杂。针对这一问题,业界提出“数据湖(DataLake)”这一新型的企业数据管理技术。数据湖是一个存储企业各种原始数据的大型仓库,支持对任意规模的结构化、半结构化和非结构化数据进行集中式存储,数据按照原有结构进行存储,无须进行结构化处理;数据湖中的数据可供存取、处理、分析及传输,支撑大
- Doris 数据集成 Apache Paimon
猫猫姐
Dorisdoris
Doris数据集成ApachePaimon湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。为便于用户快速入门,我们将通过系列文章介绍ApacheDoris与各类主流数据湖格式及存储系统的湖仓一体架构搭
- [Data Pipeline] MinIO存储(数据湖) | 数据层 Bronze/Silver/Gold
lvy-
#DatePipeline.大数据数据库python
第三章:MinIO存储(数据湖)欢迎回来,数据探险家们!在第一章:MySQL数据库(源系统)中,我们看到了原始咖啡销售数据的起点。在第二章:Spark作业(数据处理)中,我们学习了Spark作业如何作为强大的工作者来清洗、转换和准备这些数据。现在,处理后的数据去往何处?Spark作业在后续步骤中从哪里获取数据?我们需要一个中心位置,一个为海量多样化数据设计的大型存储区域。这就引出了我们的第三个关键
- 数据仓库 vs 数据湖:架构、应用场景与技术差异全解析
chat2tomorrow
SQL2API数据仓库低代码平台数据仓库架构sql2api大数据低代码数据湖
目录一、概念对比:结构化vs全类型数据二、技术架构对比1.数据仓库架构特点2.数据湖架构特点三、典型应用场景数据仓库适合:数据湖适合:四、数据湖仓一体:趋势还是折中?五、总结:如何选型?结语在大数据时代,“数据仓库”和“数据湖”常被同时提及,甚至被误认为是同一类技术方案。然而,二者在架构设计、数据处理方式、应用场景等方面存在显著差异。本文将从多个维度对比数据仓库与数据湖,帮助你厘清概念,选型不再困
- Doris数据集成 Apache Iceberg
猫猫姐
Dorisdorisiceberg
Doris数据集成ApacheIcebergApacheIceberg是一种开源、高性能、高可靠的数据湖表格式,可实现超大规模数据的分析与管理。它支持ApacheDoris在内的多种主流查询引擎,兼容HDFS以及各种对象云存储,具备ACID、Schema演进、高级过滤、隐藏分区和分区布局演进等特性,可确保高性能查询以及数据的可靠性及一致性,其时间旅行和版本回滚功能也为数据管理带来较高的灵活性。Ap
- 从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
镜舟科技
金融湖仓一体镜舟数据库数据仓库StarRocks存算分离
作者:吴岐诗,杭银消费金融大数据应用开发工程师本文整理自杭银消费金融大数据应用开发工程师在StarRocksSummitAsia2024的分享引言:融合数据湖与数仓的创新之路在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金融作为一家持牌消费金融机构,虽以金融业务为核心,却始终保持着强烈的科技创新精神,发明专利的话屈居行业第二。面对业务高速发展带来的数据挑战,公司开始了一场围绕数据基础设施
- 数据库、数据仓库、数据中台、数据湖相关概念
行云流水行云流水
数据库数据库数据仓库
文章目录序言1数据库,数据仓库,数据中台,数据湖-概念对比释义1.1概念产生的时间顺序1.2在使用功能方面对比1.3在使用工具方面对比2数据仓库2.1数据仓库的发展阶段2.2数据仓库的设计2.3数据仓库常用工具,方法2.3.1分析型数据库和关系数据库区别2.3.2常用ETL工具2.3.3常用的任务调度工具介绍序言简单的回顾记录一下,数据库,数据仓库,数据中台,数据湖的概念。避免混淆了。1数据库,数
- Deep Lake 简介
DeepLake简介DeepLake是由Activeloop开发的一款开源深度学习数据湖(DeepLearningDataLake),专为人工智能时代设计,旨在解决深度学习项目中数据管理的复杂性与低效问题。核心特点特性说明多模态数据支持支持图像、视频、音频、文本、点云等多种数据类型,适用于各类AI场景。张量存储数据以张量格式存储,兼容主流深度学习框架(如PyTorch、TensorFlow)。数据
- Paimon(数据湖框架)概述
lzhlizihang
数据湖框架Paimon数据湖大数据hdfs
文章目录一、数据湖二、什么是Paimon三、Paimon中的数据存储格式四、Paimon的核心特性五、Paimon的大规模实时更新六、LSM数据结构的核心思想一、数据湖数据湖就是:一种能够满足海量存储和海量分析的系统架构方案(不是数据库,也不是技术架构,是一种概念、一种方案和思路)其中HDFS实现了海量数据存储,Spark、MR、Flink等实现了海量数据分析所以说,Hadoop生态本质上就是数据
- 揭秘大数据领域数据架构的关键技术
大数据洞察
大数据架构ai
揭秘大数据领域数据架构的关键技术关键词:大数据、数据架构、关键技术、数据仓库、数据湖摘要:本文深入探讨大数据领域数据架构的关键技术。从大数据背景出发,详细介绍数据架构的核心概念,剖析其核心算法原理与操作步骤,结合数学模型与公式加深理解。通过项目实战案例展示代码实现与解读,探讨实际应用场景。同时推荐相关工具、资源及论文著作,最后总结大数据数据架构的未来发展趋势与挑战,并解答常见问题,为读者全面揭秘大
- Python, Go, Rust 开发40年来转移支付资金去向溯源与查询APP
Geeker-2025
pythongolangrust
以下是一个基于**Python、Go、Rust**开发的“40年来转移支付资金去向溯源与查询系统”技术方案,结合多语言优势实现资金全流程追踪与效能分析:---###**一、系统架构设计**```mermaidgraphTDA[多源数据]-->B(Python数据湖引擎)B-->C{Rust核心计算层}C-->D[Go微服务集群]D-->E[前端可视化]F[区块链存证]-->CG[审计监管端]-->
- 大数据领域的数据工程:从理论到实践
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据ai
大数据领域的数据工程:从理论到实践关键词:数据工程、大数据处理、ETL/ELT、数据湖、数据仓库、数据治理、云计算摘要:本文系统解析大数据领域的数据工程体系,从理论架构到实战落地展开深度探讨。首先构建数据工程核心概念框架,解析数据集成、存储、处理、治理的技术原理;其次通过Python和PySpark代码实现数据清洗、分布式处理等关键算法;结合真实项目案例演示数据管道搭建与优化;最后分析金融、电商等
- 湖仓融合的“最后一公里”:StarRocks 存算分离如何优化湖上实时分析?
镜舟科技
StarRocks存算分离架构实时分析湖仓融合金融科技物化视图元数据
随着数据量爆发式增长,企业数据架构正经历从传统数据仓库向现代数据湖仓一体化的转变。然而,传统数据湖虽然存储成本低,但分析性能不足;数据仓库虽然查询性能优异,但成本高昂且扩展性受限。湖仓融合面临“最后一公里”问题:如何在保证实时性、一致性的同时平衡成本?一、湖仓融合(Lakehouse)的技术演进湖仓融合的技术演进经历了从简单的数据迁移,到联邦查询,再到深度集成的过程。现代数据湖格式如Iceberg
- 从零开始学大数据:数据工程入门指南
AI天才研究院
ChatGPTAI大模型应用入门实战与进阶大数据ai
从零开始学大数据:数据工程入门指南关键词:大数据、数据工程、数据处理、ETL、数据湖、数据仓库、分布式计算摘要:本文作为面向零基础学习者的大数据工程入门指南,系统讲解数据工程核心概念、技术体系与实战方法论。从数据工程的基础架构与核心组件出发,逐步解析数据采集、清洗、转换、存储、集成的全流程技术原理,结合Python代码实现与分布式计算框架实战,帮助读者掌握Hadoop、Spark等主流工具的应用方
- 数据湖 (特点+与数据仓库和数据沼泽的对比讲解)
xixixi77777
数据仓库
数据湖就像一个“数据水库”,把企业所有原始数据(结构化的表格、半结构化的日志、非结构化的图片/视频)原样存储,供后续按需分析。对比传统数据仓库:数据仓库数据湖数据清洗后的结构化数据(如Excel表格)原始数据(日志、图片、CSV、JSON)模式先定义结构再存数据(Schema-on-Write)先存数据再按需定义结构(Schema-on-Read)用途固定报表、BI分析机器学习、探索性分析、灵活挖
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
 
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option