【土堆pytorch实战】P17-P21卷积池化线性层

P17 nn.conv

1. 卷积基础

Conv2d 二维卷积
官方文档:https://pytorch.org/docs/1.9.0/generated/torch.nn.functional.conv2d.html#torch.nn.functional.conv2d

  • CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode=‘zeros’, device=None, dtype=None)
    【土堆pytorch实战】P17-P21卷积池化线性层_第1张图片
    stride表示步长,padding表示边缘填充
import torch
import torch.nn.functional as F

input=torch.tensor([[1,2,0,3,1],
                    [0,1,2,3,1],
                   [1,2,1,0,0],
                   [5,2,3,1,1],
                   [2,1,0,1,1]])

kernel=torch.tensor([[1,2,1],
                     [0,1,0],
                     [2,1,0]])

print(input.shape)  #shape为 torch.size([5,5]) 两个参数
print(kernel.shape)  #shape为 torch.size([3,3]) 两个参数
# 由于官方文档中要求input是四个参数(minibatch,channel,H,W) 故使用reshape 两参变四参
input=torch.reshape(input,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))
output=F.conv2d(input,kernel,stride=1)  #步长为1
#卷积后的结果
print(output)

2. 在数据集上使用卷积操作

import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)
    def forward(self,x):
        x=self.conv1(x)
        return x
tudui=Tudui()
print(tudui)
for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    print(imgs.shape)
    print(output.shape)


【土堆pytorch实战】P17-P21卷积池化线性层_第2张图片
输入图像从[64,3,32,32] 经过卷积操作变成了[64,6,30,30]

  • 使用tensorboard查看
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch
dataset=torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)
    def forward(self,x):
        x=self.conv1(x)
        return x
tudui=Tudui()
print(tudui)


writer=SummaryWriter("conv2d")
step=0
for data in dataloader:
    imgs,targets=data
    output=tudui(imgs)
    writer.add_images("input",imgs,step)
    #torch.size([64,6,30,30]) -->[xxx,3,30,30]  6个通道变成3个通道
    output=torch.reshape(output,(-1,3,30,30))  #batchsize=-1,自动计算
    writer.add_images("outout",output,step)
    step=step+1

【土堆pytorch实战】P17-P21卷积池化线性层_第3张图片
【土堆pytorch实战】P17-P21卷积池化线性层_第4张图片

P19 池化层

maxpool 也叫下采样
maxunpool 也叫上采样

  • CLASS torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
    【土堆pytorch实战】P17-P21卷积池化线性层_第5张图片
    ceil_mode: ceil 天花板 floor 地板 ceil_mode=True, 边缘也取
    stride: 默认kernel_size

最大池化作用:保留数据特征,减少数据量

1.最大池化基础

import torch
from torch import nn
from torch.nn import MaxPool2d

input=torch.tensor([[1,2,0,3,1],
                    [0,1,2,3,1,],
                    [1,2,1,0,0],
                    [5,2,3,1,1],
                    [2,1,0,1,1]],dtype=torch.float32)
input=torch.reshape(input,(-1,1,5,5))
print(input.shape)


class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)
    def forward(self,input):
        output=self.maxpool1(input)
        return output
tudui=Tudui()
output=tudui(input)
print(output)

2.在数据集上使用最大池化操作

import torch
import torchvision
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)
    def forward(self,input):
        output=self.maxpool1(input)
        return output

tudui=Tudui()

writer=SummaryWriter("log_maxpool")
step=0
for data in dataloader:
    imgs,targets=data
    writer.add_images("input_maxpool",imgs,step)
    output=tudui(imgs)
    writer.add_images("output_maxpool",output,step)
    step=step+1
writer.close()

【土堆pytorch实战】P17-P21卷积池化线性层_第6张图片
【土堆pytorch实战】P17-P21卷积池化线性层_第7张图片

P20 非线性激活层

非线性激活的目的是激活模型,提高模型的泛化能力
https://pytorch.org/docs/1.9.0/nn.html#non-linear-activations-weighted-sum-nonlinearity

  • relu
import torch
from torch import nn
from torch.nn import ReLU
input=torch.tensor([[1,-0.5],
                    [-1,3]])
output=torch.reshape(input,(-1,1,2,2))
print(output.shape)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.relu1=ReLU()  #inplace是否进行原地操作 默认false 可以保留原数据
    def forward(self,input):
        output=self.relu1(input)
        return output
tudui=Tudui()
output=tudui(input)
print(output)

  • Sigmoid
    在tensorboard中显示
import torch
import torchvision
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset=torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.sigmoid1=Sigmoid()
    def forward(self,input):
        output=self.sigmoid1(input)
        return output
tudui=Tudui()


writer=SummaryWriter("logs_activate")
step=0
for data in dataloader:
    imgs,targets=data
    writer.add_images("input_act",imgs,step)
    output=tudui(imgs)
    writer.add_images("output_act",output,step)
    step+=1
writer.close()

【土堆pytorch实战】P17-P21卷积池化线性层_第8张图片
【土堆pytorch实战】P17-P21卷积池化线性层_第9张图片

P21 线性层及其他层

正则化层:加快神经网络训练速度,同时防止模型过于复杂,防止过拟合
recurrent layerRNN:用于 文字识别(其中LSTM用于nlp)
dropout layers: 随机失活,防止过拟合

  • linear layers
import torch
import torchvision
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)

for data in dataloader:
    imgs,targets=data
    print(imgs.shape)
    output=torch.reshape(imgs,(1,1,1,-1))
    print(output.shape)

【土堆pytorch实战】P17-P21卷积池化线性层_第10张图片
原始图片的size(64,3,32,32),reshape后size变为(1,1,1,196608)

经过线性层后变为(1,1,1,10)

import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.linear1=Linear(196608,10)  #输入196608维 输出10维
    def forward(self,input):
        output=self.linear1(input)
        return output
tudui=Tudui()

for data in dataloader:
    imgs,targets=data
    print(imgs.shape)
    output=torch.reshape(imgs,(1,1,1,-1))
    print(output.shape)
    output=tudui(output)
    print(output.shape)

【土堆pytorch实战】P17-P21卷积池化线性层_第11张图片
使用flatten()替代reshape

for data in dataloader:
    imgs,targets=data
    print(imgs.shape)
    # output=torch.reshape(imgs,(1,1,1,-1))
    output=torch.flatten(imgs)
    print(output.shape)
    output=tudui(output)
    print(output.shape)

【土堆pytorch实战】P17-P21卷积池化线性层_第12张图片

你可能感兴趣的:(pytorch实战,pytorch,深度学习,python)