- MotionLCM 部署优化 踩坑解决bug
AI算法网奇
aigc与数字人深度学习宝典文生motion
目录依赖项windowstorchok:渲染黑白图问题解决:humanml3d:sentence-t5-large下载数据:报错:Nomodulenamed'sentence_transformers'继续报错:fromtransformers.integrationsimportCodeCarbonCallback解决方法:推理相关转mesh:module‘matplotlib.cm‘hasno
- 基于深度学习的目标检测算法综述:从RCNN到YOLOv13,一文看懂十年演进!
人工智能教程
深度学习目标检测算法人工智能自动驾驶YOLO机器学习
一、引言:目标检测的十年巨变2012年AlexNet拉开深度学习序幕,2014年RCNN横空出世,目标检测从此进入“深度时代”。十年间,算法从两阶段到单阶段,从Anchor-base到Anchor-free,从CNN到Transformer,从2D到3D,从监督学习到自监督学习,迭代速度之快令人目不暇接。本文将系统梳理基于深度学习的目标检测算法,带你全面了解技术演进、核心思想、代表算法、工业落地与
- 视觉Transformer还有哪些点可以研究?怎么应用?
计算机视觉工坊
3D视觉从入门到精通学习算法开源
0.这篇文章干了啥?今天笔者为大家推荐一篇最新的综述,详细总结了Transformer的网络架构、优化策略、发展方向,还会定期更新Github,研究注意力机制的小伙伴一定不要错过。注意机制有助于人类视觉系统有效地分析和理解复杂场景,它能够聚焦于图像的关键区域,同时忽略无关紧要的部分。受此概念启发,注意机制已经被引入到计算机视觉(CV)中,以动态地为图像中的不同区域分配权重。这使得神经网络能够专注于
- 【AI大模型:前沿】43、Mamba架构深度解析:为什么它是Transformer最强挑战者?
无心水
架构transformerMambaMamba架构AI大模型系统开发实战AI大模型高手开发AI大模型系统实战
Transformer架构自2017年诞生以来,一直是NLP、计算机视觉等领域的“统治级”模型架构。但随着序列长度需求的增长(如128K长文本处理、基因组学超长序列分析),其自注意力机制的O(n2)O(n^2)O(n2)计算复杂度成为难以逾越的瓶颈。2023年底,由AlbertGu和TriDao等人提出的Mamba架构,通过创新的“选择性状态空间模型(SelectiveSSM)”实现了线性复杂度(
- Llama 2 模型架构深度解析:Transformer的进化
SuperAGI架构师的AI实验室
AI大模型应用开发宝典llama架构transformerai
Llama2模型架构深度解析:Transformer的进化关键词:Llama2、Transformer、模型架构、进化、人工智能摘要:本文将深入剖析Llama2的模型架构,探讨它作为Transformer进化版本的独特之处。从背景知识的介绍,到核心概念的解释,再到算法原理、实战案例以及实际应用场景等方面,为读者全面展现Llama2的魅力和价值。通过通俗易懂的语言,让即使是对技术不太熟悉的读者也能理
- 【Python】Python+sentence-transformers框架实现相似文本识别
宅男很神经
python开发语言
第一章:文本相似度与语义表示概述在深入sentence-transformers框架之前,我们首先需要对文本相似度计算及其背后的核心概念——语义表示,有一个清晰且全面的理解。这构成了后续所有讨论的基础。1.1什么是文本相似度?1.1.1定义与重要性文本相似度(TextSimilarity)是指衡量两段文本(可以是词、短语、句子、段落或整个文档)在意义或内容上相近程度的指标。这种相近可以是字面上的(
- 揭秘Transformer架构:残差流与隐藏层的关系
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythontransformer深度学习人工智能linux算法
在Transformer架构的LLM中,“残差流”(residualstream)和“隐藏层”(hiddenlayers)是密切相关但不同的概念,前者是层间流动的核心数据,后者是处理这些数据的结构单元。1.残差流(ResidualStream):层间传递的“信息流”残差流指的是在Transformer层之间传递的核心张量,它是模型中“流动”的数据载体。其本质是通过“残差连接”(residualco
- 【代码问题】【模型部署】部署千问时,ImportError: Cannot import available module of Qwen2_5_VLForConditionalGeneration
Catching Star
pythonpytorch开发语言
多半是环境的问题,最主要的是python版本要高python==3.12.9accelerate==1.8.1pipinstallqwen-vl-utils[decord]==0.0.8peft==0.14.0transformers==4.52.3torch==2.7.0torchvision==0.22.0modelscope==1.27.1
- 人工智能自然语言处理:Transformer 模型详解
大力出奇迹985
人工智能自然语言处理transformer
一、Transformer模型的诞生背景在自然语言处理的漫长征程中,早期的传统模型,如循环神经网络(RNN)及其变体长短时记忆网络(LSTM),曾占据主导地位。RNN试图通过依次处理序列中的每个元素,来捕捉上下文信息。但它存在一个致命弱点,在处理长序列时,会面临梯度消失或梯度爆炸的问题,就像一个长途跋涉的旅人,随着路程的增加,逐渐忘记了出发时的目标和重要信息。LSTM虽然在一定程度上缓解了这个问题
- LightGBM+Transformer-LSTM多变量回归交通流量预测,附模型研究报告(Matlab)
matlab科研助手
transformerlstm回归
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍交通流量预测作为智能交通系统(ITS)的核心组成部分,对城市规划、交通管理、交通诱导和出行决策具有至关重要的意义。准确、可靠的流量预测能够有效缓解交通拥堵,提高道路利用率,降
- AAAI 2024 | TMFormer:用于缺失模态脑肿瘤分割的令牌合并Transformer
小白学视觉
医学图像处理论文解读transformer深度学习人工智能AAAI论文解读计算机顶会
论文信息题目:TMFormer:TokenMergingTransformerforBrainTumorSegmentationwithMissingModalitiesTMFormer:用于缺失模态脑肿瘤分割的令牌合并Transformer作者:ZheyuZhang,GangYang,YueyiZhang,HuanjingYue,AipingLiu,YunweiOu,JianGong,Xiaoy
- 【AIGC调研系列】敢于挑战Transformer的新架构Megalodon有什么优势
Zachary AI
AIGC调研相关AIGCtransformer架构
Megalodon作为一种新架构,其优势主要体现在以下几个方面:无限上下文处理能力:Megalodon能够处理无限上下文,这一点在多个证据中得到了强调[1][2][3]。这意味着它能够在处理长文本时保持高效和准确,而不会因为上下文长度的限制而降低性能。高性能:在2万亿token的训练任务中,Megalodon的性能超越了Llama2-7B,实现了非凡的效率[1][2][3]。这表明Megalodo
- 大模型系列——长度外推
confiself
深度学习
1.长度外推存在的问题1.长度外推存在不能识别的2.长度外推存在熵变问题3.长度内插入存在缩小距离分布2.直接使用外推技巧1.窗口局部关注+最终输出全局注意2.熵变+✖系数3.keynorm,增加模型识别距离能力4.增加bias,类似于SandwichTransformer升级之路:16、“复盘”长度外推技术
- RoPE:相对位置编码的旋转革命——原理、演进与大模型应用全景
大千AI助手
人工智能Python#OTHER人工智能深度学习大模型算法RoPE位置编码相对位置
“以复数旋转解锁位置关系的本质表达,让Transformer突破长度藩篱”旋转位置编码(RotaryPositionEmbedding,RoPE)是由JianlinSu等研究者于2021年提出的突破性位置编码方法,通过复数空间中的旋转操作将相对位置信息融入Transformer的自注意力机制,解决了传统位置编码在长序列建模中的外推瓶颈。该方法是当前主流大模型(如LLaMA、GPT-NeoX)的核心
- 浅谈生成式AI语言模型的现状与展望
摘要生成式人工智能语言模型作为当前人工智能领域最具突破性的技术之一,正在深刻改变着自然语言处理的技术范式和应用格局。本文从学术文献综述的角度,系统梳理了从Transformer架构到大语言模型的技术演进历程,深入分析了当前生成式AI语言模型的核心技术特征、应用现状以及面临的主要挑战,并展望了未来发展趋势。研究表明,生成式AI语言模型在参数规模扩展、多模态融合、推理能力提升等方面取得了显著进展,但仍
- Transformer:颠覆NLP的自注意力革命
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythontransformer自然语言处理深度学习
Transformer:颠覆NLP的自注意力革命Transformer是自然语言处理领域中极具影响力的深度学习模型架构,以下是对其的详细介绍:提出背景与应用:2017年,Vaswani等人在《AttentionIsAllYouNeed》论文中首次提出Transformer架构,它主要用于处理序列到序列的任务,如机器翻译、文本生成等。核心原理:文本生成的Transformer模型原理是“预测下一个词
- Pytorch实现细节解析:Transformer模型的Encoder与Decoder逐行代码讲解
lazycatlove
pytorchtransformer人工智能
文章目录摘要一、Transformer1.1为什么要使用attention1.2Transformer的优点二、Transformer模型Encoder和Decoder原理讲解与其Pytorch逐行实现2.1wordembedding2.2单词索引构成源句子和目标句子2.3构建positionembedding2.4构造encoder的self-attentionmask2.5构造intra-at
- Swin Transformer原理与代码精讲
bai666ai
深度学习之计算机视觉transformerswinCV深度学习图像分类
课程链接:SwinTransformer原理与代码精讲--计算机视觉视频教程-人工智能-CSDN程序员研修院Transformer在许多NLP(自然语言处理)任务中取得了最先进的成果。SwinTransformer是在ViT基础上发展而来,是Transformer应用于CV(计算机视觉)领域又一里程碑式的工作。它可以作为通用的骨干网络,用于图片分类的CV任务,以及下游的CV任务,如目标检测、实例分
- Transformer Masked loss原理精讲及其PyTorch逐行实现
MaskedLoss的核心原理是:在计算损失函数时,只考虑真实有意义的词元(token),而忽略掉为了数据对齐而填充的无意义的填充词元(paddingtoken)。这是重要的技术,可以确保模型专注于学习有意义的任务,并得到一个正确的性能评估。1.原理精讲为什么需要MaskedLoss?在训练神经网络时,我们通常会用一个批次(batch)的数据进行训练,而不是一次只用一个样本。对于自然语言处理任务,
- 深入探讨 Transformer 模型架构
年纪轻轻头已凉
transformer深度学习人工智能
```html深入探讨Transformer模型架构深入探讨Transformer模型架构Transformer是一种革命性的神经网络架构,由Vaswani等人在2017年提出,并在自然语言处理(NLP)领域取得了显著的成功。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖于自注意力机制(Self-AttentionMechanism),这使得它在处理长序
- LLM面试题详解:拿到大厂Offer
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythontransformer深度学习人工智能
LLM面试题核心架构与基本概念Token化包含哪些内容,为什么它对LLM至关重要?Token化是将文本分解为更小单元(如单词、词的一部分或字符)的过程。它对LLM至关重要,因为LLM处理的是token的数值版本,通过Token化,模型可以处理多种语言、稀有词汇,保持词汇表大小可管理,提高计算速度和模型有效性。注意力机制在Transformer模型中如何运作?注意力机制通过计算查询(query)、键
- Transformer模型Decoder原理精讲及其PyTorch逐行实现
老鱼说AI
transformerpytorch深度学习人工智能学习python
原理:Decoder的核心是一个自回归(Auto-regressive)的生成器。它的任务是在给定源序列的编码表示(encoder_outputs)和已生成的目标序列部分(y_1,...,y_{t-1})的条件下,预测出下一个词y_t的概率分布。一个标准的DecoderLayer包含三个核心子层:1.带掩码的多头自注意力(MaskedMulti-HeadSelf-Attention):用于处理已生
- 大模型训练全攻略:从数据到部署,小白也能看懂的技术手册
最近总有人问:“我也想训练一个自己的大模型,该从哪儿下手?”其实大模型训练就像盖房子——得先备料(数据)、搭骨架(架构)、按图纸施工(训练),最后还要验收(评估)和维护(监控)。今天就用“工程思维”拆解全流程,从基础概念到平台工具,从参数配置到避坑指南,一文讲透。先了解一下基础的概念一、LLM的基本原理LLM的底层逻辑依赖于一个叫Transformer的神经网络架构(2017年由Google提出)
- Transformer危!谷歌MoR架构发布:内存减半推理速度还翻倍
2501_92765346
transformer架构深度学习
超越Transformer,谷歌推出全新底层架构——Mixture-of-Recursions(MoR),注意不是MoE,它能推理速度提高2倍,而KV内存直接减半!而且AllinOne,首次在单一框架中实现,用同一组参数处理不同任务的同时,进行动态分配计算资源。就像给LLM开了个双层增强buff,模型性能和效率全都要。谷歌DeepMind联合KAISTAI、Mila人团队通过统一参数共享、自适应递
- stable diffusion No module named taming
图片gan模型部署报错。pipinstalltaming-transformersImportError:cannotimportname'VectorQuantizer2'from'taming.modules.vqvae.quantize',用https://github.com/CompVis/taming-transformers/blob/master/taming/modules/vq
- ModuleNotFoundError: No module named ‘taming‘
lh_lyh
taminglightning
参考:https://stackoverflow.com/questions/69983020/modulenotfounderror-no-module-named-taming【问题】缺少taming模块,错误提示:ModuleNotFoundError:Nomodulenamed‘taming’【解决】pipinstalltaming-transformers若发现安装时因为pytorch_
- 解决HPC环境下Python的持续性ModuleNotFoundError-No module named ‘taming‘
yang_li_wen
python开发语言
一、问题描述我们的目标是在一个HPC集群的计算节点上,通过提交作业脚本来执行一个依赖于taming-transformers库的Python程序。该程序的运行环境由Conda进行管理,且环境与项目代码均部署在所有节点均可访问的共享文件系统(/project和/scratch)上。尽管我们确认依赖包已在环境中安装,但在计算节点上执行脚本时,程序在尝试导入taming模块时(fromtaming.mo
- 使用 LLaMA 3 8B 微调一个 Reward Model:从入门到实践
茫茫人海一粒沙
Lorallama
本文将介绍如何基于Meta的LLaMA38B模型构建并微调一个RewardModel,它是构建RLHF(基于人类反馈的强化学习)系统中的关键一环。我们将使用HuggingFace的transformers、trl和peft等库,通过参数高效微调(LoRA)实现高质量RewardModel的训练。什么是RewardModel?RewardModel(RM)是RLHF流程中的评分器,它学习人类偏好:在
- Python常用医疗AI库以及案例解析(场景化进阶版)
Allen_Lyb
pythonpython人工智能开发语言健康医疗
框架应用拓扑图用例MONAISimpleITKBiopythonscanpyPyTorchscikit-learnLLaVA-MedTransformersFHIRFastAPIFlowerPySyft医学图像处理生物信息学模型训练多模态分析数据交换隐私保护部署应用医学图像处理
- Python----大模型( RAG的向量化(embedding))
蹦蹦跳跳真可爱589
Python大模型pythonembedding开发语言人工智能
一、向量化向量化是将非结构化数据(如文本、图像等)转化为数字表示的一种过程。在RAG中,通常会使用预训练的Transformer模型(如BERT、RoBERTa等)将文本表示为高维的向量。这些向量能够捕捉到数据的语义信息,从而在向量空间中表示相似性。两段相似的文本在向量空间中将非常接近。快速检索:向量化将文本转换为向量后,可以通过向量相似度算法(如余弦相似度)快速检索与查询相关的信息。语义理解:通
- 多线程编程之存钱与取钱
周凡杨
javathread多线程存钱取钱
生活费问题是这样的:学生每月都需要生活费,家长一次预存一段时间的生活费,家长和学生使用统一的一个帐号,在学生每次取帐号中一部分钱,直到帐号中没钱时 通知家长存钱,而家长看到帐户还有钱则不存钱,直到帐户没钱时才存钱。
问题分析:首先问题中有三个实体,学生、家长、银行账户,所以设计程序时就要设计三个类。其中银行账户只有一个,学生和家长操作的是同一个银行账户,学生的行为是
- java中数组与List相互转换的方法
征客丶
JavaScriptjavajsonp
1.List转换成为数组。(这里的List是实体是ArrayList)
调用ArrayList的toArray方法。
toArray
public T[] toArray(T[] a)返回一个按照正确的顺序包含此列表中所有元素的数组;返回数组的运行时类型就是指定数组的运行时类型。如果列表能放入指定的数组,则返回放入此列表元素的数组。否则,将根据指定数组的运行时类型和此列表的大小分
- Shell 流程控制
daizj
流程控制if elsewhilecaseshell
Shell 流程控制
和Java、PHP等语言不一样,sh的流程控制不可为空,如(以下为PHP流程控制写法):
<?php
if(isset($_GET["q"])){
search(q);}else{// 不做任何事情}
在sh/bash里可不能这么写,如果else分支没有语句执行,就不要写这个else,就像这样 if else if
if 语句语
- Linux服务器新手操作之二
周凡杨
Linux 简单 操作
1.利用关键字搜寻Man Pages man -k keyword 其中-k 是选项,keyword是要搜寻的关键字 如果现在想使用whoami命令,但是只记住了前3个字符who,就可以使用 man -k who来搜寻关键字who的man命令 [haself@HA5-DZ26 ~]$ man -k
- socket聊天室之服务器搭建
朱辉辉33
socket
因为我们做的是聊天室,所以会有多个客户端,每个客户端我们用一个线程去实现,通过搭建一个服务器来实现从每个客户端来读取信息和发送信息。
我们先写客户端的线程。
public class ChatSocket extends Thread{
Socket socket;
public ChatSocket(Socket socket){
this.sock
- 利用finereport建设保险公司决策分析系统的思路和方法
老A不折腾
finereport金融保险分析系统报表系统项目开发
决策分析系统呈现的是数据页面,也就是俗称的报表,报表与报表间、数据与数据间都按照一定的逻辑设定,是业务人员查看、分析数据的平台,更是辅助领导们运营决策的平台。底层数据决定上层分析,所以建设决策分析系统一般包括数据层处理(数据仓库建设)。
项目背景介绍
通常,保险公司信息化程度很高,基本上都有业务处理系统(像集团业务处理系统、老业务处理系统、个人代理人系统等)、数据服务系统(通过
- 始终要页面在ifream的最顶层
林鹤霄
index.jsp中有ifream,但是session消失后要让login.jsp始终显示到ifream的最顶层。。。始终没搞定,后来反复琢磨之后,得到了解决办法,在这儿给大家分享下。。
index.jsp--->主要是加了颜色的那一句
<html>
<iframe name="top" ></iframe>
<ifram
- MySQL binlog恢复数据
aigo
mysql
1,先确保my.ini已经配置了binlog:
# binlog
log_bin = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.log
log_bin_index = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.index
log_error = D:/mysql-5.6.21-win
- OCX打成CBA包并实现自动安装与自动升级
alxw4616
ocxcab
近来手上有个项目,需要使用ocx控件
(ocx是什么?
http://baike.baidu.com/view/393671.htm)
在生产过程中我遇到了如下问题.
1. 如何让 ocx 自动安装?
a) 如何签名?
b) 如何打包?
c) 如何安装到指定目录?
2.
- Hashmap队列和PriorityQueue队列的应用
百合不是茶
Hashmap队列PriorityQueue队列
HashMap队列已经是学过了的,但是最近在用的时候不是很熟悉,刚刚重新看以一次,
HashMap是K,v键 ,值
put()添加元素
//下面试HashMap去掉重复的
package com.hashMapandPriorityQueue;
import java.util.H
- JDK1.5 returnvalue实例
bijian1013
javathreadjava多线程returnvalue
Callable接口:
返回结果并且可能抛出异常的任务。实现者定义了一个不带任何参数的叫做 call 的方法。
Callable 接口类似于 Runnable,两者都是为那些其实例可能被另一个线程执行的类设计的。但是 Runnable 不会返回结果,并且无法抛出经过检查的异常。
ExecutorService接口方
- angularjs指令中动态编译的方法(适用于有异步请求的情况) 内嵌指令无效
bijian1013
JavaScriptAngularJS
在directive的link中有一个$http请求,当请求完成后根据返回的值动态做element.append('......');这个操作,能显示没问题,可问题是我动态组的HTML里面有ng-click,发现显示出来的内容根本不执行ng-click绑定的方法!
 
- 【Java范型二】Java范型详解之extend限定范型参数的类型
bit1129
extend
在第一篇中,定义范型类时,使用如下的方式:
public class Generics<M, S, N> {
//M,S,N是范型参数
}
这种方式定义的范型类有两个基本的问题:
1. 范型参数定义的实例字段,如private M m = null;由于M的类型在运行时才能确定,那么我们在类的方法中,无法使用m,这跟定义pri
- 【HBase十三】HBase知识点总结
bit1129
hbase
1. 数据从MemStore flush到磁盘的触发条件有哪些?
a.显式调用flush,比如flush 'mytable'
b.MemStore中的数据容量超过flush的指定容量,hbase.hregion.memstore.flush.size,默认值是64M 2. Region的构成是怎么样?
1个Region由若干个Store组成
- 服务器被DDOS攻击防御的SHELL脚本
ronin47
mkdir /root/bin
vi /root/bin/dropip.sh
#!/bin/bash/bin/netstat -na|grep ESTABLISHED|awk ‘{print $5}’|awk -F:‘{print $1}’|sort|uniq -c|sort -rn|head -10|grep -v -E ’192.168|127.0′|awk ‘{if($2!=null&a
- java程序员生存手册-craps 游戏-一个简单的游戏
bylijinnan
java
import java.util.Random;
public class CrapsGame {
/**
*
*一个简单的赌*博游戏,游戏规则如下:
*玩家掷两个骰子,点数为1到6,如果第一次点数和为7或11,则玩家胜,
*如果点数和为2、3或12,则玩家输,
*如果和为其它点数,则记录第一次的点数和,然后继续掷骰,直至点数和等于第一次掷出的点
- TOMCAT启动提示NB: JAVA_HOME should point to a JDK not a JRE解决
开窍的石头
JAVA_HOME
当tomcat是解压的时候,用eclipse启动正常,点击startup.bat的时候启动报错;
报错如下:
The JAVA_HOME environment variable is not defined correctly
This environment variable is needed to run this program
NB: JAVA_HOME shou
- [操作系统内核]操作系统与互联网
comsci
操作系统
我首先申明:我这里所说的问题并不是针对哪个厂商的,仅仅是描述我对操作系统技术的一些看法
操作系统是一种与硬件层关系非常密切的系统软件,按理说,这种系统软件应该是由设计CPU和硬件板卡的厂商开发的,和软件公司没有直接的关系,也就是说,操作系统应该由做硬件的厂商来设计和开发
- 富文本框ckeditor_4.4.7 文本框的简单使用 支持IE11
cuityang
富文本框
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>知识库内容编辑</tit
- Property null not found
darrenzhu
datagridFlexAdvancedpropery null
When you got error message like "Property null not found ***", try to fix it by the following way:
1)if you are using AdvancedDatagrid, make sure you only update the data in the data prov
- MySQl数据库字符串替换函数使用
dcj3sjt126com
mysql函数替换
需求:需要将数据表中一个字段的值里面的所有的 . 替换成 _
原来的数据是 site.title site.keywords ....
替换后要为 site_title site_keywords
使用的SQL语句如下:
updat
- mac上终端起动MySQL的方法
dcj3sjt126com
mysqlmac
首先去官网下载: http://www.mysql.com/downloads/
我下载了5.6.11的dmg然后安装,安装完成之后..如果要用终端去玩SQL.那么一开始要输入很长的:/usr/local/mysql/bin/mysql
这不方便啊,好想像windows下的cmd里面一样输入mysql -uroot -p1这样...上网查了下..可以实现滴.
打开终端,输入:
1
- Gson使用一(Gson)
eksliang
jsongson
转载请出自出处:http://eksliang.iteye.com/blog/2175401 一.概述
从结构上看Json,所有的数据(data)最终都可以分解成三种类型:
第一种类型是标量(scalar),也就是一个单独的字符串(string)或数字(numbers),比如"ickes"这个字符串。
第二种类型是序列(sequence),又叫做数组(array)
- android点滴4
gundumw100
android
Android 47个小知识
http://www.open-open.com/lib/view/open1422676091314.html
Android实用代码七段(一)
http://www.cnblogs.com/over140/archive/2012/09/26/2611999.html
http://www.cnblogs.com/over140/arch
- JavaWeb之JSP基本语法
ihuning
javaweb
目录
JSP模版元素
JSP表达式
JSP脚本片断
EL表达式
JSP注释
特殊字符序列的转义处理
如何查找JSP页面中的错误
JSP模版元素
JSP页面中的静态HTML内容称之为JSP模版元素,在静态的HTML内容之中可以嵌套JSP
- App Extension编程指南(iOS8/OS X v10.10)中文版
啸笑天
ext
当iOS 8.0和OS X v10.10发布后,一个全新的概念出现在我们眼前,那就是应用扩展。顾名思义,应用扩展允许开发者扩展应用的自定义功能和内容,能够让用户在使用其他app时使用该项功能。你可以开发一个应用扩展来执行某些特定的任务,用户使用该扩展后就可以在多个上下文环境中执行该任务。比如说,你提供了一个能让用户把内容分
- SQLServer实现无限级树结构
macroli
oraclesqlSQL Server
表结构如下:
数据库id path titlesort 排序 1 0 首页 0 2 0,1 新闻 1 3 0,2 JAVA 2 4 0,3 JSP 3 5 0,2,3 业界动态 2 6 0,2,3 国内新闻 1
创建一个存储过程来实现,如果要在页面上使用可以设置一个返回变量将至传过去
create procedure test
as
begin
decla
- Css居中div,Css居中img,Css居中文本,Css垂直居中div
qiaolevip
众观千象学习永无止境每天进步一点点css
/**********Css居中Div**********/
div.center {
width: 100px;
margin: 0 auto;
}
/**********Css居中img**********/
img.center {
display: block;
margin-left: auto;
margin-right: auto;
}
- Oracle 常用操作(实用)
吃猫的鱼
oracle
SQL>select text from all_source where owner=user and name=upper('&plsql_name');
SQL>select * from user_ind_columns where index_name=upper('&index_name'); 将表记录恢复到指定时间段以前
- iOS中使用RSA对数据进行加密解密
witcheryne
iosrsaiPhoneobjective c
RSA算法是一种非对称加密算法,常被用于加密数据传输.如果配合上数字摘要算法, 也可以用于文件签名.
本文将讨论如何在iOS中使用RSA传输加密数据. 本文环境
mac os
openssl-1.0.1j, openssl需要使用1.x版本, 推荐使用[homebrew](http://brew.sh/)安装.
Java 8
RSA基本原理
RS