- 数据分析领域中AI人工智能的发展前景展望
AI大模型应用工坊
AI大模型开发实战数据分析人工智能数据挖掘ai
数据分析领域中AI人工智能的发展前景展望关键词:数据分析、人工智能、机器学习、深度学习、数据挖掘、预测分析、自动化摘要:本文深入探讨了人工智能在数据分析领域的发展现状和未来趋势。我们将从核心技术原理出发,分析AI如何改变传统数据分析范式,详细讲解机器学习算法在数据分析中的应用,并通过实际案例展示AI驱动的数据分析解决方案。文章还将探讨行业应用场景、工具生态以及未来发展面临的挑战和机遇,为数据分析师
- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- 数据挖掘算法:KNN、SVM、决策树详解
大力出奇迹985
数据挖掘算法支持向量机
本文将详细解析数据挖掘领域中常用的三种经典算法:KNN(K近邻算法)、SVM(支持向量机)和决策树。首先分别阐述每种算法的核心原理、实现步骤,再分析它们的优缺点及适用场景,最后对这三种算法进行综合对比与总结。通过本文,读者能全面了解这三种算法的特性,为实际数据挖掘任务中算法的选择提供参考,助力提升数据处理与分析的效率和准确性。在当今信息爆炸的时代,数据挖掘技术在各行各业发挥着至关重要的作用,而算法
- Python爬虫实战:研究flanker相关技术
ylfhpy
爬虫项目实战python爬虫开发语言flanker
1.引言1.1研究背景与意义在当今信息爆炸的时代,互联网上的数据量呈现出指数级增长的趋势。如何从海量的网页数据中高效地获取有价值的信息,成为了一个重要的研究课题。网络爬虫作为一种自动获取网页内容的技术,能够帮助用户快速、准确地收集所需的信息,因此在信息检索、数据挖掘、舆情分析等领域得到了广泛的应用。Flanker技术是一种基于文本分析的信息提取技术,它能够从非结构化的文本中识别和提取出特定类型的信
- 数据分析概念和总结
小小少年Boy
参考:什么是数据分析?总结:决策=数据+分析数据分析的框架:明确分析目标、数据收集、数据清理、数据分析、数据报告、执行与反馈数据分析与数据挖掘,前者偏向于业务分析,后者偏向于数据库算法,借助数据来指导决策数据分析的框架1.首先是数据分析的目的性极强区别于数据挖掘的找关联、分类、聚类,数据分析更倾向于解决现实中的问题。我想解决什么问题?通过这次的分析能让我产生什么决策?比如是否在某个高校举办一场活动
- 表征学习:机器认知世界的核心能力与前沿突破
大千AI助手
人工智能#OTHERPython学习人工智能机器学习神经网络表征学习RL特征工程
一、定义与背景:从特征工程到自动化学习表征学习(RepresentationLearning),又称特征学习(FeatureLearning),是机器学习的核心技术领域,其核心目标是通过算法自动学习数据的内在特征表示,将复杂多变的原始数据(如图像、文本、语音)转化为低维、富含语义信息的向量形式,从而提升下游任务(如分类、回归、聚类)的效率和精度。与传统依赖人工设计特征的特征工程(FeatureEn
- 高省没有邀请码怎么注册?高省app总部邀请码是什么?
日常购物技巧呀
基于第三方电商平台海量数据挖掘与分析,“高省”APP通过内容制作、分享等方式,为消费者打通吃喝玩乐购全场景全业态,让消费者省心省钱省时省力,为平台和品牌方导流创造收入,拓展了商家新的销售渠道。高省app逐渐构筑起了集各大主流电商平台,外卖平台,旅游、票务、出行、加油等高频生活服务全场景的线上生活商城。高省是正规平台吗?高省还能做吗?最新资讯【高省】分会员和运营商,会员定位是自用的,而运营是针对推广
- 生信数据挖掘+实验验证 | 鉴定RECK基因为胃癌的保护性预后指标和肿瘤抑制因子(抑制ERK/MAPK 信号通路)
生信宝库
前言image.png据相关统计,胃癌(GC)在所有癌症中的发生率位居第五位,相关死亡率排第四位。大多数GC患者在诊断时已处于晚期并发生肿瘤转移,导致预后不佳,5年总生存率低于30%。因此,迫切需要找到用于早期诊断和治疗的特异性、敏感性预后相关分子标志物,并阐明GC发生和转移的分子机制。本研究旨在探索RECK作为预后分子标志物的潜力,并揭示其在肿瘤发生和转移中的潜在机制。RECK(具有Kazal基
- 厌氧菌数据挖掘可行性评估报告
pk_xz123456
算法python数据挖掘人工智能深度学习超分辨率重建数学建模神经网络
厌氧菌数据挖掘可行性评估报告前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.项目概述本报告旨在评估使用Python从两个目标网站(https://www.dbdata.com/和https://pubmed.ncbi.nlm.nih.gov/)爬取20种厌氧菌的培养基、培养条件及文献来源信息的可行性。客户希望构建一个网站,使用户能
- 【Python-网络爬虫】爬虫的基础概念介绍
敖云岚
python爬虫开发语言
目录一、爬虫的介绍1.1爬虫的概念1.2爬虫的作用1.搜索引擎数据索引2.商业数据采集与分析3.舆情监控与社交分析4.学术研究与数据挖掘5.信息聚合与服务优化二、爬虫的分类三、爬虫的基本流程3.1基本流程3.2Robots协议一、爬虫的介绍1.1爬虫的概念爬虫的概念:通过模拟浏览器发送请求,从而获取响应1.2爬虫的作用1.搜索引擎数据索引搜索引擎如Google、百度等依赖爬虫技术构建庞大的网页索引
- 数据挖掘实战-基于随机森林算法的空气质量污染预测模型
艾派森
数据挖掘实战合集信息可视化人工智能python数据挖掘随机森林
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍3.技术工具4.实验过程
- 2023-02-09
克鲁兹王莲
R代码可以如下:```#定义数据a<-c(1,2,3,4,5)b<-c(2,3,4,5,6)c<-c(3,4,5,6,7)d<-c(4,5,6,7,8)#计算数据之间的相关系数cor_coef<-cor(cbind(a,b,c,d))#聚类以及排序hc<-hclust(as.dist(cor_coef))#绘制聚类树plot(hc)#根据聚类树,获取排序后的结果groups<-cutree(hc,
- KNN 算法进阶:从基础到优化的深度解析
二向箔reverse
人工智能机器学习
在机器学习的广袤领域中,K-近邻算法(K-NearestNeighbors,KNN)以其简洁直观的理念,宛如一颗璀璨的明星,照亮了无数初学者踏入机器学习大门的道路。自1951年由EvelynFix和JosephHodges创立,并经ThomasCover进一步完善以来,KNN算法凭借其独特的魅力,在数据挖掘、推荐系统、物联网等众多领域发挥着中流砥柱的作用,成为了监督学习算法家族中不可或缺的一员。一
- DatawhaleAI夏令营学习活动
若天明
学习
学习任务如下:##赛事任务参赛者需基于提供的带货视频文本及评论文本数据,完成以下三阶段分析任务:-【商品识别】精准识别推广商品;-【情感分析】对评论文本进行多维度情感分析,涵盖维度见数据说明;-【评论聚类】按商品对归属指定维度的评论进行聚类,并提炼类簇总结词。###数据说明本次挑战赛为参赛选手提供包含85条脱敏后的带货视频数据及6477条评论文本数据,数据包括少量有人工标注结果的训练集(仅包含商品
- 数据科学与大数据技术专业的核心课程体系及发展路径全解析
YangYang9YangYan
大数据
CDA数据分析师证书含金量高,适应了未来数字化经济和AI发展趋势,难度不高,行业认可度高,对于找工作很有帮助。一、课程体系三维地图二、核心课程能力矩阵课程模块关键技能行业应用场景工具链分布式计算Spark调优用户行为日志分析AWSEMR/Databricks数据挖掘特征工程金融反欺诈模型Scikit-learn实时数据处理Flink窗口计算物联网设备监控Kafka+Flink数据治理元数据管理企业
- Python 爬虫进阶:优化代码设计,实现高效爬取与存储
随着数据的不断增多,爬虫技术已成为数据获取和数据挖掘中不可或缺的一部分。对于简单的爬虫来说,代码实现相对简单,但当爬取目标网站的数据量增大时,如何优化代码设计、提高爬取效率、确保数据的准确存储和避免被封禁,就成了爬虫开发中的关键问题。本篇文章将深入探讨如何优化Python爬虫的设计,主要关注以下几个方面:高效的网页爬取:如何提升爬虫的抓取效率。代码模块化设计:如何将爬虫任务拆解成可复用的模块。并发
- 数据挖掘领域经典算法——CART算法
丨程序之道丨
简介CART与C4.5类似,是决策树算法的一种。此外,常见的决策树算法还有ID3,这三者的不同之处在于特征的划分:ID3:特征划分基于信息增益C4.5:特征划分基于信息增益比CART:特征划分基于基尼指数基本思想CART假设决策树是二叉树,内部结点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支。这样的决策树等价于递归地二分每个特征,将输入空间即特征空间划分为有限
- R 语言绘制六种精美热图:转录组数据可视化实践(基于 pheatmap 包)
医工交叉实验工坊
信息可视化r语言开发语言
在转录组Bulk测序数据分析中,热图是展示基因表达模式、样本聚类关系的核心可视化工具。一张高质量的热图不仅能清晰呈现数据特征,更能提升研究成果的展示效果。本文基于R语言的pheatmap包,整理了六种适用于不同场景的热图绘制方法,涵盖基础聚类、分组对比、通路注释等需求,私信即可获取全部代码,方便科研人员快速实现数据可视化。一、绘图前的数据准备热图绘制的核心是基因表达矩阵,数据格式的规范性直接影响后
- 寻找圆柱缺陷
迅卓科技
C++PCL点云处理实战专栏c++开发语言PCL点云
该程序通过圆柱拟合、差异检测、聚类分割和三维尺寸计算,实现了对工业零件表面缺陷的自动化检测与量化分析,并输出可视化结果和详细尺寸报告。效果图1.圆柱拟合模块1.1核心功能实现点云数据的圆柱拟合,包括以下关键操作:最小二乘法拟合:通过特征值分解计算圆柱轴线方向RANSAC拟合:使用法线估计和采样一致性算法精修圆柱参数坐标变换:将圆柱轴线旋转至与Z轴平行圆柱可视化:根据参数生成圆柱表面点云1.2工作流
- Day 17: 常见的聚类算法
聚类算法聚类算法是一种无监督学习技术,用于将数据集中的相似对象分组到不同的类别(称为“簇”)中,而不需要预先定义的标签。其核心目标是:同一簇内的数据点尽可能相似(高内聚性),不同簇之间的数据点尽可能不同(高分离性)。聚类广泛应用于数据挖掘、模式识别、图像处理等领域,如客户细分、文档分类或异常检测。聚类算法的基本原理聚类依赖于相似度度量(如欧氏距离)来评估数据点之间的接近程度。假设数据集包含nnn个
- 量化投资革命:卫星图像数据如何提升价值投资准确率
AI量化价值投资入门到精通
ai
量化投资革命:卫星图像数据如何提升价值投资准确率关键词:量化投资、卫星图像数据、价值投资、准确率提升、数据挖掘摘要:本文聚焦于量化投资领域,深入探讨卫星图像数据在提升价值投资准确率方面的关键作用。首先介绍量化投资与价值投资的背景,引出卫星图像数据的引入。接着详细阐述卫星图像数据的核心概念、与投资的联系以及数据处理的核心算法原理。通过数学模型和公式分析其如何助力投资决策。结合实际项目案例展示卫星图像
- C++实战:数据标准化高效实现
DBSCAN基本DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法,适用于发现任意形状的簇并识别噪声点。核心参数包括:eps:邻域半径,决定样本的邻域范围。min_samples:核心点所需的最小邻域样本数。Python实现步骤安装依赖库pipinstallnumpymatplotlibscikit-l
- Scikitlearn:Python机器学习库
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-Scikit-learn:Python机器学习库1.背景介绍1.1什么是Scikit-learnScikit-learn是一个基于Python语言的开源机器学习库。它建立在NumPy、SciPy和matplotlib等优秀的科学计算库之上,为用户提供了一系列高效的数据挖掘和数据分析工具,涵盖了分类、回归、聚类、降维、模型选择和预处理等机器学习的各个方面。Scikit-learn的目标是提供一个高
- 【JS逆向基础】script框架
是星凡呢
python与JS逆向javascript开发语言ecmascriptpythonJS逆向
scrapy框架1,基本介绍Scrapy一个开源和协作的框架,其最初是为了页面抓取(更确切来说,网络抓取)所设计的,使用它可以以快速、简单、可扩展的方式从网站中提取所需的数据。但目前Scrapy的用途十分广泛,可用于如数据挖掘、监测和自动化测试等领域,也可以应用在获取API所返回的数据(例如AmazonAssociatesWebServices)或者通用的网络爬虫。Scrapy是基于twisted
- 中国计算机学会(CCF)推荐学术会议-B(数据库/数据挖掘/内容检索):CIDR 2026
爱思德学术
数据分析系统架构数据库
CIDR2026TheConferenceonInnovativeDataSystemsResearch(CIDR)isasystems-orientedconference,complementaryinitsmissiontothemainstreamdatabaseconferenceslikeSIGMODandVLDB,emphasizingthesystemsarchitecturepe
- 中国计算机学会(CCF)推荐学术会议-A(数据库/数据挖掘/内容检索):ACM KDD 2026
爱思德学术
大数据人工智能数据挖掘
ACMKDD2026KDDisthepremierDataScienceandAIconference,hostingbothaResearchandanAppliedDataScienceTrack.TheconferencewilltakeplacefromAugust9to13,2026,inJeju,Korea.KDDhastwosubmissioncyclesperyear.Thisca
- 论文:SOLO: Segmenting Objects by Locations
小仙女呀灬
图像分割计算机视觉机器学习人工智能
作者摘要我们提出了一种新的、非常简单的实例分割方法。与许多其他密集预测任务(例如语义分割)相比,任意数量的实例使实例分割更具挑战性。为了预测每个实例的掩码,主流方法要么遵循“先检测后分割”策略(例如,MaskR-CNN),要么先预测嵌入向量,然后使用聚类技术将像素分组到单个实例中。我们通过引入“实例类别”的概念,从全新的角度看待实例分割的任务,它根据实例的位置和大小为实例中的每个像素分配类别,从而
- 250714脑电分析课题进展——基础知识扩展与论文阅读
脑电分析课题进展目录脑电分析课题进展一、概要二、论文阅读(一)内容(二)创新(三)不足三、书籍阅读四、基础知识学习(一)机器学习(二)代码能力五、总结与展望一、概要本周课题进展聚焦于论文与书籍阅读,以及基础知识的学习(包括机器学习与PyTorch的代码学习)论文阅读以毕明川学姐的学位论文为参考《基于EEG的冥想状态数据挖掘研究》书籍阅读以李颖洁的《脑电信号分析方法及其应用》第一章内容为重点机器学习
- 软考 | 系统架构设计师:信息系统综合知识大纲(思维导图)
啊有礼貌
软考系统架构设计师架构师思维导图软件架构
1.计算机软件与网络基础知识1.1操作系统操作系统的类型和结构操作系统基本原理网络操作系统及网络管理嵌入式操作系统与实时操作系统1.2数据库系统数据库管理系统的类型、结构和性能评价常用的关系型数据库管理系统数据库模式数据库规范化分布式数据库系统,并行数据库系统数据仓库与数据挖掘技术数据库工程备份恢复1.3嵌入式系统嵌入式系统的特点嵌入式系统的硬件组成与设计嵌入式系统应用软件及开发平台嵌入式系统网络
- 肯尼亚M-Pesa手机数据实时路况洞察报告
百态老人
智能手机
目录第一部分内容深度解析第二部分深化思考与核心问题2.1商业价值十问十答2.2技术核心十问十答第三部分四维商业化策略3.1政策维度3.2商业维度3.3技术维度3.4实例说明附录Python代码示例参考文献第一部分内容深度解析肯尼亚M-Pesa平台利用其庞大的移动用户信令、位置与支付数据,通过匿名化与聚类算法,将手机作为“众包传感器”,实时推断道路拥堵状态并生成城市级路况。该方案以零硬件成本替代传统
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache